Journal of Neural Transmission

, Volume 116, Issue 5, pp 587–597 | Cite as

Evidence of angiogenic vessels in Alzheimer’s disease

  • Brinda S. Desai
  • Julie A. Schneider
  • Jia-Liang Li
  • Paul M. Carvey
  • Bill Hendey
Dementias - Original Article


Alterations in the blood brain barrier and brain vasculature may be involved in neurodegeneration and neuroinflammation. We sought to determine if vascular remodeling characterized by angiogenic vessels or increased vascular density, occurred in pathologically confirmed Alzheimer’s disease (AD) postmortem human brain tissues. We examined brains of deceased, older catholic clergy from the Religious Order Study, a longitudinal clinical–pathological study of aging and AD. The hippocampus, midfrontal cortex, substantia nigra, globus pallidus and locus ceruleus were examined for integrin αvβ3 immunoreactivity, a marker of angiogenesis, and vascular densities. Activated microglia cell counts were also performed. All areas except the globus pallidus exhibited elevated αvβ3 immunoreactivity in AD cases compared with controls. Only in the hippocampus did the ongoing angiogenesis result in increased vascular density compared with controls. Vascular density was correlated with Aβ load in the hippocampus and αvβ3 reactivity was correlated with neurofibrillary tangles in the midfrontal cortex and in the substantia nigra. These data indicate that ongoing angiogenesis is present in brain regions affected by AD pathology and may be related to tissue injury.


Blood brain barrier Vasculature Alpha v beta 3 Microglia Neurofibrillary tangles Amyloid-beta 


  1. Abbott NJ (2000) Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol 20:131–147PubMedCrossRefGoogle Scholar
  2. Akiyama H, Kawamata T, Dedhar S, McGeer PL (1991) Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J Neuroimmunol 32:19–28PubMedCrossRefGoogle Scholar
  3. Akiyama H, Ikeda K, Kondo H, McGeer PL (1992) Thrombin accumulation in brains of patients with Alzheimer’s disease. Neurosci Lett 146:152–154PubMedCrossRefGoogle Scholar
  4. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8:429–431PubMedCrossRefGoogle Scholar
  5. Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE (2004) Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 61:378–384PubMedCrossRefGoogle Scholar
  6. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844PubMedCrossRefGoogle Scholar
  7. Boscolo E, Folin M, Nico B, Grandi C, Mangieri D, Longo V, Scienza R, Zampieri P, Conconi MT, Parnigotto PP, Ribatti D (2007) Beta amyloid angiogenic activity in vitro and in vivo. Int J Mol Med 19:581–587PubMedGoogle Scholar
  8. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278 discussion 278–284PubMedCrossRefGoogle Scholar
  9. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357PubMedCrossRefGoogle Scholar
  10. Brilliant MJ, Elble RJ, Ghobrial M, Struble RG (1997) The distribution of amyloid beta protein deposition in the corpus striatum of patients with Alzheimer’s disease. Neuropathol Appl Neurobiol 23:322–325PubMedCrossRefGoogle Scholar
  11. Brooks PC (1996) Role of integrins in angiogenesis. Eur J Cancer 32A:2423–2429PubMedCrossRefGoogle Scholar
  12. Cantara S, Donnini S, Morbidelli L, Giachetti A, Schulz R, Memo M, Ziche M (2004) Physiological levels of amyloid peptides stimulate the angiogenic response through FGF-2. Faseb J 18:1943–1945PubMedGoogle Scholar
  13. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  14. Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13:39–53PubMedCrossRefGoogle Scholar
  15. Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD (2005) 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur J Neurosci 22:1158–1168PubMedCrossRefGoogle Scholar
  16. Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298PubMedCrossRefGoogle Scholar
  17. Croll SD, Ransohoff RM, Cai N, Zhang Q, Martin FJ, Wei T, Kasselman LJ, Kintner J, Murphy AJ, Yancopoulos GD, Wiegand SJ (2004) VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp Neurol 187:388–402PubMedCrossRefGoogle Scholar
  18. Deane R, Zlokovic BV (2007) Role of the blood–brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4:191–197PubMedCrossRefGoogle Scholar
  19. Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112:496–507PubMedCrossRefGoogle Scholar
  20. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  21. Horton M (1990) Vitronectin receptor: tissue specific expression or adaptation to culture? Int J Exp Pathol 71:741–759PubMedGoogle Scholar
  22. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989PubMedCrossRefGoogle Scholar
  23. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  24. Kalaria RN (1992) The blood–brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovasc Brain Metab Rev 4:226–260PubMedGoogle Scholar
  25. Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 62:101–105PubMedCrossRefGoogle Scholar
  26. Kalinowski L, Dobrucki LW, Meoli DF, Dione DP, Sadeghi MM, Madri JA, Sinusas AJ (2008) Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. J Appl Physiol 104:1504–1512PubMedCrossRefGoogle Scholar
  27. Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure in monkeys. Glia 56:1199–1214PubMedCrossRefGoogle Scholar
  28. Lahdenranta J, Sidman RL, Pasqualini R, Arap W (2007) Treatment of hypoxia-induced retinopathy with targeted proapoptotic peptidomimetic in a mouse model of disease. Faseb J 21:3272–3278PubMedCrossRefGoogle Scholar
  29. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21:195–218PubMedCrossRefGoogle Scholar
  30. Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci USA 105:3587–3592PubMedCrossRefGoogle Scholar
  31. Milner R, Frost E, Nishimura S, Delcommenne M, Streuli C, Pytela R, Ffrench-Constant C (1997) Expression of alpha vbeta3 and alpha vbeta8 integrins during oligodendrocyte precursor differentiation in the presence and absence of axons. Glia 21:350–360PubMedCrossRefGoogle Scholar
  32. Mitchell TW, Nissanov J, Han LY, Mufson EJ, Schneider JA, Cochran EJ, Bennett DA, Lee VM, Trojanowski JQ, Arnold SE (2000) Novel method to quantify neuropil threads in brains from elders with or without cognitive impairment. J Histochem Cytochem 48:1627–1638PubMedGoogle Scholar
  33. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:109–119PubMedCrossRefGoogle Scholar
  34. Nakajima M, Yuasa S, Ueno M, Takakura N, Koseki H, Shirasawa T (2003) Abnormal blood vessel development in mice lacking presenilin-1. Mech Dev 120:657–667PubMedCrossRefGoogle Scholar
  35. Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4:3–8PubMedCrossRefGoogle Scholar
  36. NIA Working Group (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S1–S2CrossRefGoogle Scholar
  37. Paik DC, Fu C, Bhattacharya J, Tilson MD (2004) Ongoing angiogenesis in blood vessels of the abdominal aortic aneurysm. Exp Mol Med 36:524–533PubMedGoogle Scholar
  38. Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M (2004a) Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 366:80–85PubMedCrossRefGoogle Scholar
  39. Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, Wotoczek-Obadia M, DelleDonne A, Patel N, Obregon DF, Crescentini R, Abdullah L, Coppola D, Rojiani AM, Crawford F, Sebti SM, Mullan M (2004b) Inhibition of angiogenesis by Abeta peptides. Angiogenesis 7:75–85PubMedCrossRefGoogle Scholar
  40. Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood–brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176:7666–7675PubMedGoogle Scholar
  41. Pinkstaff JK, Detterich J, Lynch G, Gall C (1999) Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci 19:1541–1556PubMedGoogle Scholar
  42. Pogue AI, Lukiw WJ (2004) Angiogenic signaling in Alzheimer’s disease. Neuroreport 15:1507–1510PubMedCrossRefGoogle Scholar
  43. Sato W, Kosugi T, Zhang L, Roncal CA, Heinig M, Campbell-Thompson M, Yuzawa Y, Atkinson MA, Grant MB, Croker BP, Nakagawa T (2008) The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy. Lab Invest 88:949–961PubMedCrossRefGoogle Scholar
  44. Schmid-Brunclik N, Burgi-Taboada C, Antoniou X, Gassmann M, Ogunshola OO (2008) Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. Am J Physiol Regul Integr Comp Physiol 295:R864–R873PubMedGoogle Scholar
  45. Schneider JA, Li JL, Li Y, Wilson RS, Kordower JH, Bennett DA (2006) Substantia nigra tangles are related to gait impairment in older persons. Ann Neurol 59:166–173PubMedCrossRefGoogle Scholar
  46. Schneider JA, Boyle PA, Arvanitakis Z, Bienias JL, Bennett DA (2007) Subcortical infarcts, Alzheimer’s disease pathology, and memory function in older persons. Ann Neurol 62:59–66PubMedCrossRefGoogle Scholar
  47. Schultheiss C, Blechert B, Gaertner FC, Drecoll E, Mueller J, Weber GF, Drzezga A, Essler M (2006) In vivo characterization of endothelial cell activation in a transgenic mouse model of Alzheimer’s disease. Angiogenesis 9:59–65PubMedCrossRefGoogle Scholar
  48. Siedlak SL, Cras P, Kawai M, Richey P, Perry G (1991) Basic fibroblast growth factor binding is a marker for extracellular neurofibrillary tangles in Alzheimer disease. J Histochem Cytochem 39:899–904PubMedGoogle Scholar
  49. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14PubMedCrossRefGoogle Scholar
  50. Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23:237–243PubMedCrossRefGoogle Scholar
  51. Thirumangalakudi L, Samany PG, Owoso A, Wiskar B, Grammas P (2006) Angiogenic proteins are expressed by brain blood vessels in Alzheimer’s disease. J Alzheimers Dis 10:111–118PubMedGoogle Scholar
  52. Tsopanoglou NE, Maragoudakis ME (1999) On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem 274:23969–23976PubMedCrossRefGoogle Scholar
  53. Vagnucci AH Jr, Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361:605–608PubMedCrossRefGoogle Scholar
  54. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA (2001) Collateral growth and angiogenesis around cortical stroke. Stroke 32:2179–2184PubMedCrossRefGoogle Scholar
  55. Williams RW, Rakic P (1988) Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 278:344–352PubMedCrossRefGoogle Scholar
  56. Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J, Gambhir SS (2008) Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology 248:936–944PubMedCrossRefGoogle Scholar
  57. Yang SP, Bae DG, Kang HJ, Gwag BJ, Gho YS, Chae CB (2004) Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer’s disease. Neurobiol Aging 25:283–290PubMedCrossRefGoogle Scholar
  58. Zarow C, Barron E, Chui HC, Perlmutter LS (1997) Vascular basement membrane pathology and Alzheimer’s disease. Ann N Y Acad Sci 826:147–160PubMedCrossRefGoogle Scholar
  59. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341PubMedCrossRefGoogle Scholar
  60. Zetterberg H, Andreasen N, Blennow K (2004) Increased cerebrospinal fluid levels of transforming growth factor-beta1 in Alzheimer’s disease. Neurosci Lett 367:194–196PubMedCrossRefGoogle Scholar
  61. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Brinda S. Desai
    • 1
  • Julie A. Schneider
    • 2
    • 3
    • 4
  • Jia-Liang Li
    • 2
    • 3
  • Paul M. Carvey
    • 1
    • 3
  • Bill Hendey
    • 1
  1. 1.Department of PharmacologyRush University Medical CenterChicagoUSA
  2. 2.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA
  3. 3.Department of Neurological SciencesRush University Medical CenterChicagoUSA
  4. 4.Department of PathologyRush University Medical CenterChicagoUSA

Personalised recommendations