Journal of Neural Transmission

, Volume 116, Issue 3, pp 333–338 | Cite as

Do polymorphisms in transcription factors LMX1A and LMX1B influence the risk for Parkinson’s disease?

  • Olle Bergman
  • Anna Håkansson
  • Lars Westberg
  • Andrea Carmine Belin
  • Olof Sydow
  • Lars Olson
  • Björn Holmberg
  • Laura Fratiglioni
  • Lars Bäckman
  • Elias Eriksson
  • Hans Nissbrandt
Movement Disorders - Original Article

Abstract

The key symptoms of Parkinson’s disease (PD) are caused by degeneration of dopamine neurons originating in substantia nigra. Whereas, transcription factor LMX1A is crucial for the differentiation of mesencephalic dopamine neurons, LMX1B appears to be important for both the development and the survival of these cells. The aim of this study was to investigate if genetic variation in LMX1A and LMX1B differs between patients with PD (n = 357) and control subjects (n = 1428) by genotyping 33 single nucleotide polymorphisms (SNPs) in LMX1A and 11 SNPs in LMX1B. Three SNPs in LMX1A and one in LMX1B were associated with PD. After splitting for gender, six SNPs were associated with PD in women and four in men. The significances obtained did not survive correction for multiple testing, and our results should hence be interpreted with caution, but are partly in line with a previous report, and should thus be of sufficient interest to encourage further studies of these genes in PD.

Keywords

Parkinson’s disease LMX1A LMX1B SNPs Association study Neuronal development 

References

  1. Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127(9):1857–1867PubMedGoogle Scholar
  2. Alavian KN, Scholz C, Simon HH (2008) Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord 23(3):319–328PubMedCrossRefGoogle Scholar
  3. Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124(2):393–405PubMedCrossRefGoogle Scholar
  4. Ang SL (2006) Transcriptional control of midbrain dopaminergic neuron development. Development 133(18):3499–3506PubMedCrossRefGoogle Scholar
  5. Ardayfio P, Moon J, Leung KK, Youn-Hwang D, Kim KS (2008) Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinson’s disease. Neurobiol Dis 31(3):406–412 [Epub 4 June 2008]PubMedCrossRefGoogle Scholar
  6. Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, Grigoletto F, Amaducci L, Inzitari D (2000) Parkinson’s disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 55(9):1358–1363PubMedGoogle Scholar
  7. Barzilai A, Melamed E (2003) Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Mol Med 9(3):126–132PubMedCrossRefGoogle Scholar
  8. Belin AC, Westerlund M (2008) Parkinson’s disease: a genetic perspective. FEBS J 275(7):1377–1383PubMedCrossRefGoogle Scholar
  9. Bergman O, Hakansson A, Westberg L, Nordenstrom K, Carmine Belin A, Sydow O, Olson L, Holmberg B, Eriksson E, Nissbrandt H (2008) PITX3 polymorphism is associated with early onset Parkinson’s disease. Neurobiol Aging. 15 April 2008 [Epub ahead of print] Google Scholar
  10. Burbach JP, Smidt MP (2006) Molecular programming of stem cells into mesodiencephalic dopaminergic neurons. Trends Neurosci 29(11):601–603PubMedCrossRefGoogle Scholar
  11. Daniel SE, Lees AJ (1993) Parkinson’s Disease Society Brain Bank, London: overview and research. J Neural Transm Suppl 39:165–172PubMedGoogle Scholar
  12. Dunston JA, Hamlington JD, Zaveri J, Sweeney E, Sibbring J, Tran C, Malbroux M, O’Neill JP, Mountford R, McIntosh I (2004) The human LMX1B gene: transcription unit, promoter, and pathogenic mutations. Genomics 84(3):565–576PubMedCrossRefGoogle Scholar
  13. Fratiglioni L, Viitanen M, Backman L, Sandman PO, Winblad B (1992) Occurrence of dementia in advanced age: the study design of the Kungsholmen Project. Neuroepidemiology 11(Suppl 1):29–36PubMedCrossRefGoogle Scholar
  14. Fuchs J, Mueller JC, Lichtner P, Schulte C, Munz M, Berg D, Wullner U, Illig T, Sharma M, Gasser T (2007) The transcription factor PITX3 is associated with sporadic Parkinson’s disease. Neurobiol Aging. 28 September 2007 [Epub ahead of print] Google Scholar
  15. Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez D, Britton A, Gibbs JR, Langefeld C, Stiegert ML, Schymick J, Okun MS, Mandel RJ, Fernandez HH, Foote KD, Rodriguez RL, Peckham E, De Vrieze FW, Gwinn-Hardy K, Hardy JA, Singleton A (2006) Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 5(11):911–916PubMedCrossRefGoogle Scholar
  16. Gasser T (2005) Genetics of Parkinson’s disease. Curr Opin Neurol 18(4):363–369PubMedCrossRefGoogle Scholar
  17. Hicks AA, Petursson H, Jonsson T, Stefansson H, Johannsdottir HS, Sainz J, Frigge ML, Kong A, Gulcher JR, Stefansson K, Sveinbjornsdottir S (2002) A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann Neurol 52(5):549–555PubMedCrossRefGoogle Scholar
  18. Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76(1):8–32PubMedCrossRefGoogle Scholar
  19. Kuppers E, Ivanova T, Karolczak M, Beyer C (2000) Estrogen: a multifunctional messenger to nigrostriatal dopaminergic neurons. J Neurocytol 29(5–6):375–385PubMedCrossRefGoogle Scholar
  20. Manthey D, Behl C (2006) From structural biochemistry to expression profiling: neuroprotective activities of estrogen. Neuroscience 138(3):845–850PubMedCrossRefGoogle Scholar
  21. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, Pant PV, Frazer KA, Cox DR, Ballinger DG (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77(5):685–693PubMedCrossRefGoogle Scholar
  22. Ono Y, Nakatani T, Sakamoto Y, Mizuhara E, Minaki Y, Kumai M, Hamaguchi A, Nishimura M, Inoue Y, Hayashi H, Takahashi J, Imai T (2007) Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134(17):3213–3225PubMedCrossRefGoogle Scholar
  23. Roybon L, Hjalt T, Christophersen NS, Li JY, Brundin P (2008) Effects on differentiation of embryonic ventral midbrain progenitors by Lmx1a, MSX1, Ngn2, and Pitx3. J Neurosci 28(14):3644–3656PubMedCrossRefGoogle Scholar
  24. Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B, Bresnick EH, Schlossmacher MG (2008) GATA transcription factors directly regulate the Parkinson’s disease-linked gene {alpha}-synuclein. Proc Natl Acad Sci USA 105:10907–10912 [Epub 31 July 2008]PubMedCrossRefGoogle Scholar
  25. Smidt MP, Burbach JP (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8(1):21–32PubMedCrossRefGoogle Scholar
  26. Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3(4):337–341PubMedCrossRefGoogle Scholar
  27. Sutherland G, Mellick G, Sue C, Chan DK, Rowe D, Silburn P, Halliday G (2007) A functional polymorphism in the parkin gene promoter affects the age of onset of Parkinson’s disease. Neurosci Lett 414(2):170–173PubMedCrossRefGoogle Scholar
  28. Thameem F, Wolford JK, Wang J, German MS, Bogardus C, Prochazka M (2002) Cloning, expression and genomic structure of human LMX1A, and variant screening in Pima Indians. Gene 290(1–2):217–225PubMedCrossRefGoogle Scholar
  29. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35(4):341–348PubMedCrossRefGoogle Scholar
  30. Wallen A, Perlmann T (2003) Transcriptional control of dopamine neuron development. Ann N Y Acad Sci 991:48–60PubMedCrossRefGoogle Scholar
  31. Westberg L, Hakansson A, Melke J, Shahabi HN, Nilsson S, Buervenich S, Carmine A, Ahlberg J, Grundell MB, Schulhof B, Klingborg K, Holmberg B, Sydow O, Olson L, Johnels EB, Eriksson E, Nissbrandt H (2004) Association between the estrogen receptor beta gene and age of onset of Parkinson’s disease. Psychoneuroendocrinology 29(8):993–998PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Olle Bergman
    • 1
  • Anna Håkansson
    • 1
  • Lars Westberg
    • 1
  • Andrea Carmine Belin
    • 3
  • Olof Sydow
    • 4
  • Lars Olson
    • 3
  • Björn Holmberg
    • 2
  • Laura Fratiglioni
    • 5
  • Lars Bäckman
    • 5
  • Elias Eriksson
    • 1
  • Hans Nissbrandt
    • 1
  1. 1.Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
  2. 2.Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
  3. 3.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  4. 4.Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
  5. 5.The Aging Research CenterKarolinska InstitutetStockholmSweden

Personalised recommendations