Journal of Neural Transmission

, Volume 115, Issue 9, pp 1313–1319 | Cite as

l-dopa modulates motor cortex excitability in Alzheimer’s disease patients

  • Alessandro Martorana
  • Alessandro Stefani
  • Maria Giuseppina Palmieri
  • Zaira Esposito
  • Giorgio Bernardi
  • Giuseppe Sancesario
  • Mariangela Pierantozzi
Alzheimer's Disease and Related Disorders - Original Article

Abstract

In Alzheimer’s disease (AD), transcranial magnetic stimulation (TMS) studies have shown abnormalities of motor cortical excitability, such as a decreased intra-cortical inhibition (ICI) and changes in resting motor threshold (rMT). We studied the effects of l-dopa on rMT and ICI in a cohort of moderate AD patients after paired-pulse TMS. Results were compared with a control group of healthy subjects. As expected, AD patients showed a significant reduction in ICI and a lower rMT. l-dopa administration (soluble form, melevodopa 200 mg) promptly reversed the ICI impairment up to normalization. This effect was specific, since it was not mimicked in control subjects. These results indicate a possible role of dopamine in modulating AD cortical excitability, thus suggesting an interaction between dopaminergic ascending pathways and endogenous intracortical transmitters. In addition, considering that l-dopa showed a pharmacological profile similar to the one of cholinomimetics, l-dopa might represent a reliable tool to study new therapeutic perspective and strategies for AD.

Keywords

Transcranial magnetic stimulation Intracortical inhibition Alzheimer’s disease levodopa acetylcholine 

References

  1. Alagona G, Bella R, Ferri R, Carnemolla A, Pappalardo A, Costanzo E, Pennisi G (2001) Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity. Neurosci Lett 314(1–2):57–60PubMedCrossRefGoogle Scholar
  2. Allard PO, Rinne J, Marcusson JO (1994) Dopamine uptake sites in Parkinson’s disease and in dementia of the Alzheimer type. Brain Res 637(1–2):262–266PubMedCrossRefGoogle Scholar
  3. Basil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett MM (1992) Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse and stimulus intensity. J Clin Neurophysiol 9:132–136CrossRefGoogle Scholar
  4. Berlanga ML, Simpson TK, Alcantara AA (2005) Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 492(1):34–49PubMedCrossRefGoogle Scholar
  5. Calabresi P, Picconi B, Parnetti L, Di Filippo M (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 5(11):974–983PubMedCrossRefGoogle Scholar
  6. Carlesimo GA, Caltagirone C, Gainotti G (1996) The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The group for the standardization of the mental deterioration battery. Eur Neurol 36(6):378–384Google Scholar
  7. De Carvalho M, de Mendonca A, Miranda PC, Garcia C, Luis ML (1997) Magnetic stimulation in Alzheimer’s disease. J Neurol 244(5):304–307Google Scholar
  8. De Keyser J, Ebinger G, Vauquelin G (1990) D1-dopamine receptor abnormality in frontal cortex points to a functional alteration of cortical cell membranes in Alzheimer’s disease. Arch Neurol 47(7):761–763PubMedGoogle Scholar
  9. Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59(3):392–397PubMedGoogle Scholar
  10. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Tonali PA (2003) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease: evidence of impaired glutamatergic neurotransmission? Ann Neurol 53(6):824PubMedCrossRefGoogle Scholar
  11. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psych 75(4):555–559CrossRefGoogle Scholar
  12. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Ghirlanda S, Ranieri F, Gainotti G, Tonali P (2005) Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psych 76(8):1064–1069CrossRefGoogle Scholar
  13. Fahn S, Elton RL and members of the UPDRS development committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M and Calne DB, (eds) Recent developments in Parkinson’s disease, MacMillan, Florham Park 2, NY, p 153Google Scholar
  14. Ferreri F, Pauri F, Pasqualetti P, Fini R, Dal Forno G, Rossini PM (2003) Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation study. Ann Neurol 53(1):102–108PubMedCrossRefGoogle Scholar
  15. Goldman-Rakic PS, Bergson C, Krimer LS, Lidow MS, William SM, Williams GV (1999) The primate mesocortical dopamine system. In: Bloom FE, Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy: the primate nervous system, Pt III Amsterdam: Elsevier pp 403–428Google Scholar
  16. Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31(2–3):295–301Google Scholar
  17. Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28(3):327–335PubMedCrossRefGoogle Scholar
  18. Haglund M, Sjobeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26(6):528–532PubMedCrossRefGoogle Scholar
  19. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  20. Korchounov A, Ilic TV, Schwinge T, Ziemann U (2005) Modification of motor cortical excitability by an acetylcholinesterase inhibitor. Exp Brain Res 164(3):399–405PubMedCrossRefGoogle Scholar
  21. Korchounov A, Ilic TV, Ziemann U (2007) TMS-assisted neurophysiological profiling of the dopamine receptor agonist cabergoline in human motor cortex. J Neural Transm 114(2):223–229PubMedCrossRefGoogle Scholar
  22. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519PubMedGoogle Scholar
  23. Kumar U, Patel SC (2007) Immunohistochemical localization of dopamine receptor subtypes (D1R–D5R) in Alzheimer’s disease brain. Brain Res 1131(1):187–196PubMedCrossRefGoogle Scholar
  24. Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112(8):1436–1441PubMedCrossRefGoogle Scholar
  25. Loubinoux I, Pariente J, Boulanouar K, Carel C, Manelfe C, Rascol O, Celsis P, Chollet F (2002) A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: double-blind, placebo-controlled, fMRI study in healthy subjects. Neuroimage. 15(1):26–36PubMedCrossRefGoogle Scholar
  26. Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24(1):1–23PubMedCrossRefGoogle Scholar
  27. Mair RD, Kauer JA (2007) Amphetamine depresses excitatory synaptic transmission at prefrontal cortical layer V synapses. Neuropharmacology 52(1):193–199PubMedCrossRefGoogle Scholar
  28. Meintzschel F, Ziemann U (2006) Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Cereb Cortex 16(8):1106–1115PubMedCrossRefGoogle Scholar
  29. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197PubMedCrossRefGoogle Scholar
  30. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225PubMedGoogle Scholar
  31. Paspalas CD, Goldman-Rakic PS (2005) Presynaptic D1 dopamine receptors in primate prefrontal cortex: target-specific expression in the glutamatergic synapse. J Neurosci 25(5):1260–1267PubMedCrossRefGoogle Scholar
  32. Pennisi G, Alagona G, Ferri R, Greco S, Santonocito D, Pappalardo A, Bella R (2002) Motor cortex excitability in Alzheimer disease: one year follow-up study. Neurosci Lett 329(3):293–296PubMedCrossRefGoogle Scholar
  33. Pepin JL, Bogacz D, de Pasqua V, Delwaide PJ (1999) Motor cortex inhibition is not impaired in patients with Alzheimer’s disease: evidence from paired transcranial magnetic stimulation. J Neurol Sci 170(2):119–123PubMedCrossRefGoogle Scholar
  34. Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, Bernardi G, Stanzione P, Stefani A (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115(10):2410–2418PubMedGoogle Scholar
  35. Reis J, Tergau F, Hamer HM, Maller HH, Knake S, Fritsch B, Oertel WH, Rosenow F (2002) Topiramate selectively decreases intracortical excitability in human motor cortex. Epilepsia. 43(10):1149–1156PubMedCrossRefGoogle Scholar
  36. Reis J, Wentrup A, Hamer HM, Mueller HH, Knake S, Tergau F, Oertel WH, Rosenow F (2004) Levetiracetam influences human motor cortex excitability mainly by modulation of ion channel function-a TMS study. Epilepsy Res 62(1):41–51PubMedCrossRefGoogle Scholar
  37. Reis J, John D, Heimeroth A, Mueller HH, Oertel WH, Arndt T, Rosenow F (2006) Modulation of human motor cortex excitability by single doses of amantadine. Neuropsychopharmacology 31(12):2758–2766PubMedCrossRefGoogle Scholar
  38. Reyes MG, Faraldi F, Rydman R, Wang CC (2003) Decreased nigral neuromelanin in Alzheimer’s disease. Neurol Res 25(2):179–182PubMedCrossRefGoogle Scholar
  39. Ridding MC, Inzelberg R, Rothwell JC (1995) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188PubMedCrossRefGoogle Scholar
  40. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevia MR, Hallett M, Katayama Y, Lacking CH, et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2):79–92Google Scholar
  41. Rossini PM, Rossi S, Babiloni C, Polich J (2007) Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol 83(6):375–400PubMedCrossRefGoogle Scholar
  42. Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6(1):48–56PubMedCrossRefGoogle Scholar
  43. Sawaki L, Boroojerdi B, Kaelin-Lang A, Burstein AH, Batefisch CM, Kopylev L, Davis B, Cohen LG (2002) Cholinergic influences on use-dependent plasticity. J Neurophysiol 87(1):166–171PubMedGoogle Scholar
  44. Stocchi F, Fabbri L, Vecsei L, Krygowska-Wajs A, Monici Preti PA, Ruggieri SA (2007) Clinical efficacy of a single afternoon dose of effervescent levodopa-carbidopa preparation (CHF 1512) in fluctuating Parkinson disease. Clin Neuropharmacol 30(1):18–24PubMedCrossRefGoogle Scholar
  45. Suva D, Favre I, Kraftsik R, Esteban M, Lobrinus A, Miklossy J (1999) Primary motor cortex involvement in Alzheimer disease. J Neuropathol Exp Neurol 58(11):1125–1134PubMedGoogle Scholar
  46. Varma AR, Snowden JS, Lloyd JJ, Talbot PR, Mann DM, Neary D (1999) Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 66(2):184–188PubMedCrossRefGoogle Scholar
  47. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60(3):337–341PubMedCrossRefGoogle Scholar
  48. Zhang L, Zhou FM, Dani JA (2004) Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release. Mol Pharmacol 66(3):538–544PubMedCrossRefGoogle Scholar
  49. Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115(8):1717–1729PubMedCrossRefGoogle Scholar
  50. Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40(3):367–378PubMedCrossRefGoogle Scholar
  51. Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W (1997) Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalogr Clin Neurophysiol 105(6):430–437PubMedCrossRefGoogle Scholar
  52. Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51(5):1320–1324PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alessandro Martorana
    • 1
    • 2
  • Alessandro Stefani
    • 1
    • 2
  • Maria Giuseppina Palmieri
    • 1
    • 2
  • Zaira Esposito
    • 1
  • Giorgio Bernardi
    • 1
    • 2
  • Giuseppe Sancesario
    • 1
  • Mariangela Pierantozzi
    • 1
    • 2
  1. 1.Dipartimento di Neuroscienze, Clinica NeurologicaUniversità di RomaRomeItaly
  2. 2.Santa Lucia Foundation IRCCS Hospital at the European Centre for Brain ResearchRomeItaly

Personalised recommendations