Journal of Neural Transmission

, Volume 115, Issue 12, pp 1629–1642 | Cite as

Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila

  • Elena Savvateeva-PopovaEmail author
  • Andrej Popov
  • Abraham Grossman
  • Ekaterina Nikitina
  • Anna Medvedeva
  • Dmitry Molotkov
  • Nicholas Kamyshev
  • Konstantin Pyatkov
  • Olga Zatsepina
  • Natalya Schostak
  • Elena Zelentsova
  • Galina Pavlova
  • Dmitry Panteleev
  • Peter Riederer
  • Michail Evgen`ev
Basic Neurosciences, Genetics and Immunology - Original Article


At most, many protein-misfolding diseases develop as environmentally induced sporadic disorders. Recent studies indicate that the dynamic interplay between a wide repertoire of noncoding RNAs and the environment play an important role in brain development and pathogenesis of brain disorders. To elucidate this new issue, novel animal models which reproduce the most prominent disease manifestations are required. For this, transgenic Drosophila strains were constructed to express small highly structured, non-coding RNA under control of a heat shock promoter. Expression of the RNA induced formation of intracellular aggregates revealed by Thioflafin T in embryonic cell culture and Congo Red in the brain of transgenic flies. Also, this strongly perturbed the brain control of locomotion monitored by the parameters of sound production and memory retention of young 5-day-old males. This novel model demonstrates that expression of non-coding RNA alone is sufficient to trigger neuropathology.


Drosophila transgenic strains Non-coding RNA Intracellular aggregates Visuo-spatial orientation Locomotion Cognitive impairments 



The study was supported by Q-RNA Firm 799 (USA) and Grants of Russian Foundation for Fundamental Research 800 (E. S–P, A. P, M.E, O.Z) and Grant Molecular and Cellular Biology to M.E.


  1. Adler V, Zeiler B, Kryukov V, Kascsak R, Rubinstein R, Grossman A (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrPSen to PrPRes in vitro. J Mol Biol 332:47–57PubMedCrossRefGoogle Scholar
  2. Bennet-Clark HC (1984) A particle velocity microphone for the song of small insects and other acoustic measurements. J Exp Biol 108:459–463Google Scholar
  3. Bonini NM, Fortini ME (2003) Human neurodegenerative disease modeling using Drosophila. Ann Rev Neurosci 26:627–656PubMedCrossRefGoogle Scholar
  4. Burmistrova OA, Goltsov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev EI (2007) MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry 72:578–582PubMedGoogle Scholar
  5. Choczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159Google Scholar
  6. Echalier G (1999) Drosophila cells in culture. Academic Press, New YorkGoogle Scholar
  7. Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues: a review. Stain Technol 63:201–212PubMedGoogle Scholar
  8. Fanti L, Berloco M, Piacentini L, Pimpinelli S (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117:135–147PubMedCrossRefGoogle Scholar
  9. Gispert-Sanchez S, Auburger G (2006) The role of protein aggregates in neuronal pathology: guilty, innocent, or just trying to help? J Neural Transm Suppl 70:111–117PubMedCrossRefGoogle Scholar
  10. Greenspan RF, Ferveur J-F (2000) Courtship in Drosophila. Annu Rev Genet 34:205–232PubMedCrossRefGoogle Scholar
  11. Grünblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiqutin–proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:543–1573Google Scholar
  12. Heaphy S, Finch JT, Gait MJ, Karn J, Singh M (1991) Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich “bubble” located within the rev-responsive region of viral mRNAs. Proc Natl Acad Sci USA 88:7366–7370PubMedCrossRefGoogle Scholar
  13. Hébert SS, De Strooper B (2007) Molecular biology. miRNAs in neurodegeneration. Science 317:1179–1180PubMedCrossRefGoogle Scholar
  14. Heimbeck G, BugnonV Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 98:15336–16341PubMedCrossRefGoogle Scholar
  15. Heisenberg M (1994) Central brain function in insects: genetic studies on the mushroom bodies and central complex in Drosophila. Fortschr Zool 39:61–79Google Scholar
  16. Hiesenberg M, Böhl K (1979) Isolation of anatomical brain mutants of Drosophila by histological means. Z Naturf 34:134–147Google Scholar
  17. Hirsch EC (2006) How to judge animal models of Parkinson’s disease in terms of neuroprotection. J Neural Transm Suppl 70:255–260PubMedCrossRefGoogle Scholar
  18. Iwazaki T, Li X, Harada K (2005) Evolvability of the mode of peptide binding by an RNA. RNA 11:1364–1373PubMedCrossRefGoogle Scholar
  19. Ivey-Hoyle M, Rosenberg M (1990) Rev-dependent expression of human immunodeficiency virus type 1 gp160 in Drosophila melanogaster cells. Mol Cell Biol 10:6152–6159PubMedGoogle Scholar
  20. Jin Y, Cowan JA (2007) Cellular activity of Rev response element RNA targeting metallopeptides. J Biol Chem 12:637–644Google Scholar
  21. Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM (2001) Protein–RNA interactions: a structural analysis. Nucleic Acids Res 29:943–954PubMedCrossRefGoogle Scholar
  22. Kamyshev NG, Iliadi KG, Bragina JV (1999) Drosophila conditioned courtship: two ways of testing memory. Learn Mem 6:1–20PubMedGoogle Scholar
  23. Kashiwagi N, Furuta H, Ikawa Y (2007) Design and analysis of a structural RNA that acts as a template for peptide ligation. Nucleic Acids Symp Ser 51:387–388CrossRefGoogle Scholar
  24. Korneev S, O’Shea M (2005) Natural antisense RNAs in the nervous system. Rev Neurosci 16:213–222PubMedGoogle Scholar
  25. Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076PubMedGoogle Scholar
  26. Lee W-CM, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Nat Acad Sci USA 101:3224–3229PubMedCrossRefGoogle Scholar
  27. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512PubMedCrossRefGoogle Scholar
  28. LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410PubMedCrossRefGoogle Scholar
  29. LeVine H 3rd (2005) Multiple ligand binding sites on A beta(1–40) fibrils. Amyloid 12:5–14PubMedCrossRefGoogle Scholar
  30. Lim JK (1993) In situ hybridization with biotinylated DNA. Drosoph Inf Serv 72:73–77Google Scholar
  31. Lockhart A, Ye L, Judd DB, Merritt AT, Lowe PN, Morgenstern JL, Hong G, Gee AD, Brown J (2005) Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer’s disease PET imaging agents on beta-amyloid peptide fibrils. J Biol Chem 280:7677–7684PubMedCrossRefGoogle Scholar
  32. Lovestone S, McLoughlin DM (2002) Protein aggregates and dementia: is there a common toxicity? J Neurol Neurosurg Psychiatry 72:52–161Google Scholar
  33. Maniatis T, Fritsch EE, Sambrook J (1982) Molecular cloning. CSHL Press, Cold Spring Harbor, New YorkGoogle Scholar
  34. Martin J-R, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol Ser A 185:277–288CrossRefGoogle Scholar
  35. Masliah E, Terry RD, DeTeresa RM, Hansen LA (1989) Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci Lett 103:234–239PubMedCrossRefGoogle Scholar
  36. Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–1547PubMedCrossRefGoogle Scholar
  37. Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14:R121–R132PubMedCrossRefGoogle Scholar
  38. Matzura O, Wennborg A (1996) RNA draw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 12:247–249PubMedGoogle Scholar
  39. Mehler MF, Mattick JS (2006) Non-coding RNAs in the nervous system. J Physiol 575:333–341PubMedCrossRefGoogle Scholar
  40. Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823PubMedCrossRefGoogle Scholar
  41. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721PubMedCrossRefGoogle Scholar
  42. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Neurosci 6:11–22CrossRefGoogle Scholar
  43. Nikitina EA, Tokmatcheva EV, Savvateeva-Popova EV (2003) Heat shock during the development of central structures of the Drosophila brain: memory formation in the l(1)ts403 mutant of Drosophila melanogaster. Russian J Genetics 39:25–31CrossRefGoogle Scholar
  44. Osborne RJ, Thornton CA (2006) RNA-dominant diseases. Hum Mol Genet 15:R162–R169PubMedCrossRefGoogle Scholar
  45. Perneger TV (1998) What’s wrong with Bonferroni adjustments. Br Med J 316:1236–1238Google Scholar
  46. Pirrotta V (1988) Vectors for P-mediated transformation in Drosophila. Biotechnology 10:437–456PubMedGoogle Scholar
  47. Popov A, Savvateeva-Popova EV, Kamyshev NG (2000) Peculiarities of acoustic communication in fruit flies Drosophila melanogaster. Sens Syst 14:60–74Google Scholar
  48. Popov AV, Peresleni A, Savvateeva-Popova E, Wolf R, Heisenberg M (2004) The role of the mushroom bodies and of the central complex of Drosophila melanogaster brain in the organization of courtship behavior and communicative sound production. J Evol Biochem Physiol 40:641–652Google Scholar
  49. Rogaev EI (2005) Small RNAs in human brain development and disorders. Biochemistry 70:1404–1407PubMedGoogle Scholar
  50. Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470PubMedGoogle Scholar
  51. Roterman I, Krόl M, Nowak M, Konieczny L, Rybarska J, Stopa B, Piekarska B, Zemanek G (2001) Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach. Med Sci Monit 7:771–784PubMedGoogle Scholar
  52. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353PubMedCrossRefGoogle Scholar
  53. Savvateeva-Popova EV, Popov AV, Nikitina EA, Medvedeva AV, Peresleni AI, Korochkin L, Grossman AI, Pyatkov KI, Zatsepina OG, Zelentsova ES, Evgen`ev MB (2007) Pathogenic chaperone-Like RNA induces congophilic aggregates and facilitates neurodegneration in Drosophila. Cell Stress Chaperones 12:9–19PubMedCrossRefGoogle Scholar
  54. Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32PubMedCrossRefGoogle Scholar
  55. Siegel RW, Hall JC (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci USA 76:3430–3434PubMedCrossRefGoogle Scholar
  56. Siwicki KK, Ladewski L (2003) Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav Processes 64:225–238PubMedCrossRefGoogle Scholar
  57. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman WH & Co, New York, pp 803–820Google Scholar
  58. Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861PubMedGoogle Scholar
  59. Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P (2006) Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm 113:1041–1054PubMedCrossRefGoogle Scholar
  60. Vasan S, Mong PY, Grossman A (2006) Interaction of prion protein with small highly structured RNAs: detection and characterization of PrP-oligomers. Neurochem Res 31:629–37PubMedCrossRefGoogle Scholar
  61. Wolf R, Wittig T, Liu L, Wustmann G, Eyding D, Heisenberg M (1998) Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5:66–178Google Scholar
  62. Zawistowski S (1988) A replication demonstrating reduced courtship of Drosophila melanogaster by associative learning. J Comp Psychol 102:174–176CrossRefGoogle Scholar
  63. Zeiler B, Adler V, Kryukov V, Grossman A (2003) Concentration and removal of prion proteins from biological solutions. Biotechnol Appl Biochem 37:173–182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elena Savvateeva-Popova
    • 1
    Email author
  • Andrej Popov
    • 2
  • Abraham Grossman
    • 3
  • Ekaterina Nikitina
    • 1
  • Anna Medvedeva
    • 1
  • Dmitry Molotkov
    • 1
  • Nicholas Kamyshev
    • 1
  • Konstantin Pyatkov
    • 4
  • Olga Zatsepina
    • 5
  • Natalya Schostak
    • 5
  • Elena Zelentsova
    • 5
  • Galina Pavlova
    • 6
  • Dmitry Panteleev
    • 6
  • Peter Riederer
    • 7
  • Michail Evgen`ev
    • 5
  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt PetersburgRussia
  2. 2.Sechenov Institute of Evolutionary Physiology and BiochemistrySt PetersburgRussia
  3. 3.MNESIS Company LLCPleasantvilleUSA
  4. 4.Division of BiologyCalifornia Institute of TechnologyPassadenaUSA
  5. 5.Engelhardt Institute of Molecular BiologyMoscowRussia
  6. 6.Institute of Gene BiologyMoscowRussia
  7. 7.Institute of Clinical Neurochemistry and National Parkinson Foundation Centre of Excellence Laboratories, Clinic and Policlinic for Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany

Personalised recommendations