Advertisement

Journal of Neural Transmission

, Volume 115, Issue 9, pp 1269–1274 | Cite as

The effects of 1 Hz rTMS over the hand area of M1 on movement kinematics of the ipsilateral hand

  • Manuel Dafotakis
  • Christian Grefkes
  • Ling Wang
  • Gereon R. Fink
  • Dennis A. NowakEmail author
Basic Neurosciences, Genetics and Immunology - Short Communication

Abstract

1 Hz rTMS applied over primary motor cortex (M1) reduces cortical excitability outlasting the stimulation period. Healthy right-handed subjects performed finger and hand tapping and a reach-to-grasp movement prior to (baseline) and after 1 Hz rTMS applied over (1) M1 of either the right or the left hemisphere, and (2) the vertex (control stimulation). 1 Hz rTMS applied over the left M1, but not over the vertex, improved movement kinematics of finger and hand tapping as well as grasping with the left hand. 1 Hz rTMS applied over the right M1, but not over the vertex, improved only the kinematics of hand tapping performed with the right hand. These data suggest that 1 Hz rTMS induced inhibition of ipsilateral M1 reduces transcallosal inhibition of contralateral M1 and thereby improves motor performance at the ipsilateral hand. The impact on motor performance of the ipsilateral hand is most pronounced after 1 Hz rTMS over the left M1.

Keywords

Kinematic motion analysis Transcallosal Grasping Interhemispheric competition 

References

  1. Avanzino L, Brove M, Trompetto C, Tacchino A, Ogliastro C, Abbruzzese G (2008) 1-Hz ripetitive TMS over ipsilateral motor cortex influences the performance of sequential finger movements of different complexity. Eur J NeuroSci 27:1285–1291PubMedCrossRefGoogle Scholar
  2. Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213PubMedCrossRefGoogle Scholar
  3. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403PubMedGoogle Scholar
  4. Crovitz HF, Zener K (1965) A group for assessing hand and eye dominance. Am J Psychol 75:271–276CrossRefGoogle Scholar
  5. Danek A, Heye B, Schroedter R (1992) Cortically evoked responses in patients with Xp223-linked Kallmann’s syndrome and in female gene carriers. Ann Neurol 31:299–304PubMedCrossRefGoogle Scholar
  6. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMedGoogle Scholar
  7. Fink GR, Frackowiak R, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174PubMedGoogle Scholar
  8. Gilio F, Rizzo V, Siebner HR, Rothwell JC (2003) Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. J Physiol 551:563–573PubMedCrossRefGoogle Scholar
  9. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246PubMedCrossRefGoogle Scholar
  10. Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke. Lancet Neurol 5:708–712PubMedCrossRefGoogle Scholar
  11. Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254PubMedGoogle Scholar
  12. Kinsbourne M (1974) Mechanisms of hemispheric interaction in man. In: Kinsbourne M, Smith WL (eds) Hemispheric disconnection and cerebral function Springfield. Thomas, IL, pp 260–285Google Scholar
  13. Kobayashi M, Hutchinson S, Theoret H, Schlaug G, Pascal-Leone A (2004) Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology 62:91–98PubMedGoogle Scholar
  14. Liepert J, Hamzei F, Weiller C (2000) Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 23:1761–1763PubMedCrossRefGoogle Scholar
  15. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805PubMedCrossRefGoogle Scholar
  16. Netz J, Ziemann U, Homberg V (1995) Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res 104:527–533PubMedCrossRefGoogle Scholar
  17. Nowak DA, Grefkes C, Dafotakis M, Küst J, Karbe H, Fink GR (2007) Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke. Eur J NeuroSci 25:3173–3184PubMedCrossRefGoogle Scholar
  18. Talelli P, Rothwell JC (2006) Does brain stimulation after stroke has a future? Curr Opin Neurol 19:543–550PubMedCrossRefGoogle Scholar
  19. Uttner I, Kraft E, Nowak DA, Müller F, Philipp J, Zierdt A, Hermsdörfer J (2007) Mirror movements and the role of handedness: isometric grip force changes. Motor Control 11:16–28PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Manuel Dafotakis
    • 1
    • 2
  • Christian Grefkes
    • 3
  • Ling Wang
    • 1
    • 2
  • Gereon R. Fink
    • 1
    • 2
    • 3
  • Dennis A. Nowak
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Neuroscience and Biophysics (INB3-Medicine)Research Centre JülichJülichGermany
  2. 2.Brain Imaging Centre West (BICW)Research Centre JülichJülichGermany
  3. 3.Department of NeurologyUniversity of CologneCologneGermany

Personalised recommendations