Journal of Neural Transmission

, Volume 115, Issue 8, pp 1087–1091 | Cite as

The Janus-face kynurenic acid

  • Éva Rózsa
  • Hermina Robotka
  • László Vécsei
  • József Toldi
Basic Neurosciences, Genetics and Immunology - Original Article

Abstract

Kynurenic acid is an endogenous product of the tryptophan metabolism. Studies on the mechanism of its action have revealed that kynurenic acid at high concentrations is a competitive antagonist of the N-methyl-d-aspartate receptor and acts as a neuroprotectant in different neurological disorders. This in vitro investigation was designed to show that kynurenic acid acts differently at low concentrations. In vitro electrophysiological examinations on the young rat hippocampus confirmed the well-known finding that kynurenic acid in micromolar concentrations exerts an inhibitory effect. However, in nanomolar concentrations, kynurenic acid does not give rise to inhibition, but in fact facilitates the field excitatory postsynaptic potentials. The results available so far are compatible with the idea that kynurenic acid in the concentration range between a few hundred nanomolar and micromolar displays different effects. Its probable action on different receptors, inducing the different mechanisms, is discussed. The findings strongly suggest the neuromodulatory role of kynurenic acid under both physiological and pathological circumstances.

Keywords

Kynurenic acid NMDA receptor Hippocampus Electrophysiology 

References

  1. Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P et al (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J. Neurosci 24:4635–4648PubMedCrossRefGoogle Scholar
  2. Baran H, Jellinger K, Deecke L (1999) Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 106(2):165–181PubMedCrossRefGoogle Scholar
  3. Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55(4):1327–1339PubMedCrossRefGoogle Scholar
  4. Carpenedo R, Meli E, Peruginelli F, Pellegrini-Giampietro DE, Moroni F (2002) Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures. J Neurochem 82(6):1465–1471PubMedCrossRefGoogle Scholar
  5. Erhardt S, Schwieler L, Engberg G (2003) Kynurenic acid and schizophrenia. Adv Exp Med Biol 527:155–165PubMedGoogle Scholar
  6. Fuvesi J, Somlai C, Nemeth H, Varga H, Kis Z, Farkas T, Karoly N, Dobszay M, Penke Z, Penke B et al (2004) Comparative study on the effects of kynurenic acid and glucosamine-kynurenic acid. Pharmacol Biochem Behav 77(1):95–102PubMedCrossRefGoogle Scholar
  7. Gigler G, Szenasi G, Simo A, Levay G, Harsing LG Jr, Sas K, Vecsei L, Toldi J (2007) Neuroprotective effect of l-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils. Eur J Pharmacol 564(1–3):116–122PubMedCrossRefGoogle Scholar
  8. Giles GI, Collins CA, Stone TW, Jacob C (2003) Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochem Biophys Res Commun 300(3):719–724PubMedCrossRefGoogle Scholar
  9. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473PubMedGoogle Scholar
  10. Kaminski RM, Zielinska E, Dekundy A, van Luijtelaar G, Turski W (2003) Deficit of endogenous kynurenic acid in the frontal cortex of rats with a genetic form of absence epilepsy. Pol J Pharmacol 55(5):741–746PubMedGoogle Scholar
  11. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52(4):1319–1328PubMedCrossRefGoogle Scholar
  12. Kiss C, Shepard PD, Bari F, Schwarcz R (2004) Cortical spreading depression augments kynurenate levels and reduces malonate toxicity in the rat cortex. Brain Res 1002(1–2):129–135PubMedCrossRefGoogle Scholar
  13. Klivenyi P, Toldi J, Vecsei L (2004) Kynurenines in neurodegenerative disorders: therapeutic consideration. Adv Exp Med Biol 541:169–183PubMedGoogle Scholar
  14. Knyihar-Csillik E, Csillik B, Pakaski M, Krisztin-Peva B, Dobo E, Okuno E, Vecsei L (2004) Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) treatment. Neuroscience 126(4):899–914PubMedCrossRefGoogle Scholar
  15. Luccini E, Musante V, Neri E, Raiteri M, Pittaluga A (2007) N-methyl-d-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J Neurosci Res 85(16):3657–3665PubMedCrossRefGoogle Scholar
  16. Luchowska E, Luchowski P, Sarnowska A, Wielosz M, Turski WA, Urbanska EM (2003) Endogenous level of kynurenic acid and activities of kynurenine aminotransferases following transient global ischemia in the gerbil hippocampus. Pol J Pharmacol 55(3):443–447PubMedGoogle Scholar
  17. Minatogawa Y, Noguchi T, Kido R (1974) Kynurenine pyruvate transaminase in rat brain. J Neurochem 23(1):271–272PubMedCrossRefGoogle Scholar
  18. Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375(1–3):87–100PubMedCrossRefGoogle Scholar
  19. Moroni F, Russi P, Lombardi G, Beni M, Carla V (1988) Presence of kynurenic acid in the mammalian brain. J Neurochem 51(1):177–180PubMedCrossRefGoogle Scholar
  20. Moroni F, Carpenedo R, Cozzi A, Meli E, Chiarugi A, Pellegrini-Giampietro DE (2003) Studies on the neuroprotective action of kynurenine mono-oxygenase inhibitors in post-ischemic brain damage. Adv Exp Med Biol 527:127–136PubMedGoogle Scholar
  21. Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2(3):249–260PubMedCrossRefGoogle Scholar
  22. Nemeth H, Robotka H, Toldi J, Vecsei L (2007) Kynurenines in the central nervous system: recent developments. Cent Nerv Syst Agent Med Chem 7:45–56Google Scholar
  23. Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80(2–3):315–322PubMedCrossRefGoogle Scholar
  24. Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42(9):1702–1706PubMedGoogle Scholar
  25. Pellicciari R, Natalini B, Costantino G, Mahmoud MR, Mattoli L, Sadeghpour BM, Moroni F, Chiarugi A, Carpenedo R (1994) Modulation of the kynurenine pathway in search for new neuroprotective agents. Synthesis and preliminary evaluation of (m-nitrobenzoyl)alanine, a potent inhibitor of kynurenine-3-hydroxylase. J Med Chem 37(5):647–655PubMedCrossRefGoogle Scholar
  26. Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402(1–2):108–112PubMedCrossRefGoogle Scholar
  27. Robotka H, Nemeth H, Somlai C, Vecsei L, Toldi J (2005) Systemically administered glucosamine-kynurenic acid, but not pure kynurenic acid, is effective in decreasing the evoked activity in area CA1 of the rat hippocampus. Eur J Pharmacol 513(1–2):75–80PubMedCrossRefGoogle Scholar
  28. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10PubMedCrossRefGoogle Scholar
  29. Schwarcz R, Ceresoli-Borroni G, Wu HQ, Rassoulpour A, Poeggeler B, Hodgkins PS, Guidetti P (1999) Modulation and function of kynurenic acid in the immature rat brain. Adv Exp Med Biol 467:113–123PubMedGoogle Scholar
  30. Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50(7):521–530PubMedCrossRefGoogle Scholar
  31. Smith DH, Okiyama K, Thomas MJ, McIntosh TK (1993) Effects of the excitatory amino acid receptor antagonists kynurenate and indole-2-carboxylic acid on behavioral and neurochemical outcome following experimental brain injury. J Neurosci 13(12):5383–5392PubMedGoogle Scholar
  32. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMedGoogle Scholar
  33. Stone TW (2001) Kynurenic acid antagonists and kynurenine pathway inhibitors. Expert Opin Investig Drugs 10(4):633–645PubMedCrossRefGoogle Scholar
  34. Swartz KJ, During MJ, Freese A, Beal MF (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10(9):2965–2973PubMedGoogle Scholar
  35. Vecsei L, Beal MF (1996) Huntington’s disease, behavioral disturbances, and kynurenines: preclinical findings and therapeutic perspectives. Biol Psychiatry 39(12):1061–1063PubMedCrossRefGoogle Scholar
  36. Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D (2000) Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm 107(3):343–353PubMedCrossRefGoogle Scholar
  37. Wolf H (1974) Studies on tryptophan metabolism in man. Scan J Clin Lab Invest 136S:1–186Google Scholar
  38. Wu HQ, Rassoulpour A, Goodman JH, Scharfman HE, Bertram EH, Schwarcz R (2005) Kynurenate and 7-chlorokynurenate formation in chronically epileptic rats. Epilepsia 46(7):1010–1016PubMedCrossRefGoogle Scholar
  39. Yamamoto H, Murakami H, Horiguchi K, Egawa B (1995) Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain Dev 17(5):327–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Éva Rózsa
    • 1
  • Hermina Robotka
    • 1
    • 2
  • László Vécsei
    • 2
  • József Toldi
    • 1
  1. 1.Department of Physiology, Anatomy and NeuroscienceUniversity of SzegedSzegedHungary
  2. 2.Department of NeurologyUniversity of SzegedSzegedHungary

Personalised recommendations