Journal of Neural Transmission

, Volume 115, Issue 7, pp 1011–1017

Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration

Parkinson's Disease and Allied Conditions - Original Article

Abstract

Ketogenic diet (KD) is an effective treatment for intractable epilepsies. We recently found that KD can prevent seizure and myoclonic jerk in a rat model of post-hypoxic myoclonus. In the present study, we tested the hypothesis that KD can prevent the cerebral ischemic neurodegeneration in this animal model. Rats fed a standard diet or KD for 25 days were being subjected to mechanically induced cardiac arrest brain ischemia for 8 min 30 s. Nine days after cardiac arrest, frozen rat brains were sectioned for evaluation of ischemia-induced neurodegeneration using fluoro-jade (FJ) staining. The FJ positive degenerating neurons were counted manually. Cardiac arrest-induced cerebral ischemia in rats fed the standard diet exhibited extensive neurodegeneration in the CA1 region of the hippocampus, the number of FJ positive neurons was 822 ± 80 (n = 4). They also showed signs of neurodegeneration in the Purkinje cells of the cerebellum and in the thalamic reticular nucleus, the number of FJ positive neurons in the cerebellum was 55 ± 27 (n = 4), the number of FJ positive neurons in the thalamic reticular nucleus was 22 ± 5 (n = 4). In contrast, rats fed KD showed no evidence of neurodegeneration, the number of FJ positive neurons in these areas were zero. The results demonstrate that KD can prevent cardiac arrest-induced cerebral ischemic neurodegeneration in selected brain regions.

Keywords

Ketogenic diet Cerebral ischemia Neurodegeneration Fluoro-jade Seizure Epilepsy Cardiac arrest 

References

  1. Bough KJ, Eagles DA (1999) A ketogenic diet increases the resistance to pentylenetetrazole-induced seizures in the rat. Epilepsia 40:138–143PubMedCrossRefGoogle Scholar
  2. Bough KJ, Valiyil R, Han FT, Eagles DA (1999) Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy Res 35:21–28PubMedCrossRefGoogle Scholar
  3. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235PubMedCrossRefGoogle Scholar
  4. Cheng CM, Kelley B, Wang J, Strauss D, Eagles DA, Bondy CA (2003) A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 144:2676–2682PubMedCrossRefGoogle Scholar
  5. Costa C, Martella G, Picconi B, Prosperetti C, Pisani A, Di Filippo M, Pisani F, Bernardi G, Calabresi P (2006) Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke 37:1319–1326PubMedCrossRefGoogle Scholar
  6. Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM (1998) The efficacy of the ketogenic diet–1998: a prospective evaluation of intervention in 150 children. Pediatrics 102:1358–1363PubMedCrossRefGoogle Scholar
  7. Graham E, Mishra OP, Delivoria-Papadopoulos M (1993) Brain cell membrane Na+, K(+)-ATPase modification following hypoxia in the guinea pig fetus. Neurosci Lett 153:93–97PubMedCrossRefGoogle Scholar
  8. Hoyer S, Krier C (1986) Ischemia and aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging 7:23–29PubMedCrossRefGoogle Scholar
  9. Iadarola MJ, Gale K (1982) Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218:1237–1240PubMedCrossRefGoogle Scholar
  10. Kawai K, Penix LP, Kawahara N, Ruetzler CA, Klatzo I (1995) Development of susceptibility to audiogenic seizures following cardiac arrest cerebral ischemia in rats. J Cereb Blood Flow Metab 15:248–258PubMedGoogle Scholar
  11. Ljunggren B, Schutz H, Siesjo BK (1974) Changes in energy state and acid–base parameters of the rat brain during complete compression ischemia. Brain Res 73:277–289PubMedCrossRefGoogle Scholar
  12. Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 27:3618–3625PubMedCrossRefGoogle Scholar
  13. Mady MA, Kossoff EH, McGregor AL, Wheless JW, Pyzik PL, Freeman JM (2003) The ketogenic diet: adolescents can do it, too. Epilepsia 44:847–851PubMedCrossRefGoogle Scholar
  14. Marie C, Bralet AM, Gueldry S, Bralet J (1990) Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis. Metab Brain Dis 5:65–75PubMedCrossRefGoogle Scholar
  15. McNamara JO, Galloway MT, Rigsbee LC, Shin C (1984) Evidence implicating substantia nigra in regulation of kindled seizure threshold. J Neurosci 4:2410–2417PubMedGoogle Scholar
  16. Nordli DR Jr., Kuroda MM, Carroll J, Koenigsberger DY, Hirsch LJ, Bruner HJ, Seidel WT, De Vivo DC (2001) Experience with the ketogenic diet in infants. Pediatrics 108:129–133PubMedCrossRefGoogle Scholar
  17. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New YorkGoogle Scholar
  18. Peterman MG (1924) Ketogenic diet in treatment of epilepsy. Am J Dis Child 28:28–33Google Scholar
  19. Prins ML, Fujima LS, Hovda DA (2005) Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 82:413–420PubMedCrossRefGoogle Scholar
  20. Rekling JC (2003) Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation. Neurosci Lett 335:167–170PubMedCrossRefGoogle Scholar
  21. Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, Sperling MR (1999) The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 40:1721–1726PubMedCrossRefGoogle Scholar
  22. Suzuki M, Suzuki M, Kitamura Y, Mori S, Sato K, Dohi S, Sato T, Matsuura A, Hiraide A (2002) Beta-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 89:36–43PubMedCrossRefGoogle Scholar
  23. Suzuki M, Suzuki M, Sato K, Dohi S, Sato T, Matsuura A, Hiraide A (2001) Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87:143–150PubMedCrossRefGoogle Scholar
  24. Swink TD, Vining EP, Freeman JM (1997) The ketogenic diet: 1997. Adv Pediatr 44:297–329PubMedGoogle Scholar
  25. Tai KK, Truong DD (2005) Post-hypoxic myoclonus induces Fos expression in the reticular thalamic nucleus and neurons in the brainstem. Brain Res 1059:122–128PubMedCrossRefGoogle Scholar
  26. Tai KK, Truong DD (2007a) Ketogenic diet prevents seizure and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia. Neurosci Lett 425:34–38PubMedCrossRefGoogle Scholar
  27. Tai KK, Truong DD (2007b) NMDA receptor-mediated excitotoxicity contributes to the cerebral hypoxic injury of a rat model of posthypoxic myoclonus. Brain Res 1133:209–215PubMedCrossRefGoogle Scholar
  28. Truong DD, Matsumoto RR, Schwartz PH, Hussong MJ, Wasterlain CG (1994) Novel rat cardiac arrest model of posthypoxic myoclonus. Mov Disord 9:201–206PubMedCrossRefGoogle Scholar
  29. Van der Auwera I, Wera S, Van der Leuven F, Henderson ST (2005) A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2:28CrossRefGoogle Scholar
  30. VanItallie TB, Nufert TH (2003) Ketones: metabolism’s ugly duckling. Nutr Rev 61:327–341PubMedCrossRefGoogle Scholar
  31. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr. (2001) Ketone bodies, potential therapeutic uses. IUBMB Life 51:241–247PubMedCrossRefGoogle Scholar
  32. Vining EP (1999) Clinical efficacy of the ketogenic diet. Epilepsy Res 37:181–190PubMedCrossRefGoogle Scholar
  33. Wilder RM (1921) The effects of ketonemia on the course of epilepsy. Mayo Clin Bull 2:307Google Scholar
  34. Yamada KA, Rensing N, Thio LL (2005) Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci Lett 385:210–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.The Parkinson’s and Movement Disorder Research LaboratoryLong Beach Memorial Medical CenterLong BeachUSA
  2. 2.The Parkinson’s and Movement Disorder InstituteFountain ValleyUSA

Personalised recommendations