Advertisement

Journal of Neural Transmission

, Volume 115, Issue 6, pp 921–927 | Cite as

Glial and neuronal damage markers in patients with anorexia nervosa

  • Stefan Ehrlich
  • Roland Burghardt
  • Deike Weiss
  • Harriet Salbach-Andrae
  • Eugenia Maria Craciun
  • Klaus Goldhahn
  • Burghard F. Klapp
  • Ulrike Lehmkuhl
Biological Child and Adolescent Psychiatry - Original Article

Abstract

Anorexia nervosa (AN) commonly arises during adolescence leading to interruptions of somatic and psychological development as well as to atrophic brain changes. It remains unclear whether these brain changes are related to the loss of neurons, glia, neuropil or merely due to fluid shifts. We determined leptin levels and two brain-derived damage markers: glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE) of 43 acute AN patients and 50 healthy control woman (HCW). Peripheral GFAP and NSE concentrations of AN patients were not elevated and not different from HCW. Subjects with particularly low leptin concentration, indicating severe malnutrition, did not show abnormal values either. During weight recovery the marker proteins remained unchanged. Our preliminary results are in line with neuroimaging studies supporting the reversibility of brain changes in AN and do not substantiate hypotheses relying on the extensive damage of brain cells as an explanation for cerebral atrophy in AN.

Keywords

Anorexia nervosa Brain atrophy Neurodegeneration GFAP NSE Leptin 

Notes

Acknowledgments

The authors would like to thank R. Schott for help with the recruitment of the participants, L. Franke, Ph.D. for technical assistance and E. Pfeiffer, MD for help with the study design and critical reading of the manuscript.

References

  1. Artmann H, Grau H, Adelmann M, Schleiffer R (1985) Reversible and non-reversible enlargement of cerebrospinal fluid spaces in anorexia nervosa. Neuroradiology 27:304–312PubMedCrossRefGoogle Scholar
  2. Bailer UF, Frank GK, Henry SE, Price JC, Meltzer CC, Weissfeld L, Mathis CA, Drevets WC, Wagner A, Hoge J, Ziolko SK, McConaha CW, Kaye WH (2005) Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635. Arch Gen Psychiatry 62:1032–1041PubMedCrossRefGoogle Scholar
  3. Blusztajn JK, Holbrook PG, Lakher M, Liscovitch M, Maire JC, Mauron C, Richardson UI, Tacconi M, Wurtman RJ (1986) “Autocannibalism” of membrane choline-phospholipids: physiology and pathology. Psychopharmacol Bull 22:781–786PubMedGoogle Scholar
  4. Boesenberg-Grosse C, Schulz-Schaeffer WJ, Bodemer M, Ciesielczyk B, Meissner B, Krasnianski A, Bartl M, Heinemann U, Varges D, Eigenbrod S, Kretzschmar HA, Green A, Zerr I (2006) Brain-derived proteins in the CSF: do they correlate with brain pathology in CJD? BMC Neurol 6:35PubMedCrossRefGoogle Scholar
  5. Bremnes RM, Sundstrom S, Aasebo U, Kaasa S, Hatlevoll R, Aamdal S (2003) The value of prognostic factors in small cell lung cancer: results from a randomised multicenter study with minimum 5 year follow-up. Lung Cancer 39:303–313PubMedCrossRefGoogle Scholar
  6. Burbaeva G, Zaiko SD (1987) Concentration of neuron- and non-neuron-specific enolase isoenzymes in different structures of the brains of mentally healthy subjects and schizophrenic patients. Zh Nevropatol Psikhiatr Im S S Korsakova 87:104–109PubMedGoogle Scholar
  7. Cooper EH (1994) Neuron-specific enolase. Int J Biol Markers 9:205–210PubMedGoogle Scholar
  8. DeGiorgio CM, Correale JD, Gott PS, Ginsburg DL, Bracht KA, Smith T, Boutros R, Loskota WJ, Rabinowicz AL (1995) Serum neuron-specific enolase in human status epilepticus. Neurology 45:1134–1137PubMedGoogle Scholar
  9. de Haan L, Bakker JM (2004) Overview of neuropathological theories of schizophrenia: from degeneration to progressive developmental disorder. Psychopathology 37:1–7PubMedCrossRefGoogle Scholar
  10. Duchesne M, Mattos P, Fontenelle LF, Veiga H, Rizo L, Appolinario JC (2004) Neuropsychology of eating disorders: a systematic review of the literature. Rev Bras Psiquiatr 26:107–117PubMedCrossRefGoogle Scholar
  11. Egan MF, el-Mallakh RS, Suddath RL, Lohr JB, Bracha HS, Wyatt RJ (1992) Cerebrospinal fluid and serum levels of neuron-specific enolase in patients with schizophrenia. Psychiatry Res 43:187–195PubMedCrossRefGoogle Scholar
  12. Ehrlich S, Querfeld U, Pfeiffer E (2006) Refeeding oedema: an important complication in the treatment of anorexia nervosa. Eur Child Adolesc Psychiatry 15:241–243PubMedCrossRefGoogle Scholar
  13. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451PubMedCrossRefGoogle Scholar
  14. Fichter M, Quadflieg N (1999) SIAB. Strukturiertes Inventar für Anorektische und Bulimische Essstörungen nach DSM-IV und ICD-10. Huber, BernGoogle Scholar
  15. Fleta Zaragozano J, Jimenez Vidal A, Velilla Picazo M, Gonzalez Castro G, Pina Leita I, Olivares Lopez JL (2005) Anorexia nervosa and cerebral atrophy in adolescents. Med Clin (Barc) 124:571–572CrossRefGoogle Scholar
  16. Frank GK, Bailer UF, Henry S, Wagner A, Kaye WH (2004) Neuroimaging studies in eating disorders. CNS Spectr 9:539–548PubMedGoogle Scholar
  17. Franke GH (2002) SCL-90-R. Symptom-Checkliste von L.R. Derogatis—Deutsche Version. Beltz Test GMBH, GöttingenGoogle Scholar
  18. Gianotti L, Lanfranco F, Ramunni J, Destefanis S, Ghigo E, Arvat E (2002) GH/IGF-I axis in anorexia nervosa. Eat Weight Disord 7:94–105PubMedGoogle Scholar
  19. Golden NH, Ashtari M, Kohn MR, Patel M, Jacobson MS, Fletcher A, Shenker IR (1996) Reversibility of cerebral ventricular enlargement in anorexia nervosa, demonstrated by quantitative magnetic resonance imaging. J Pediatr 128:296–301PubMedCrossRefGoogle Scholar
  20. Gunston GD, Burkimsher D, Malan H, Sive AA (1992) Reversible cerebral shrinkage in kwashiorkor: an MRI study. Arch Dis Child 67:1030–1032PubMedCrossRefGoogle Scholar
  21. Hansen LA, Armstrong DM, Terry RD (1987) An immunohistochemical quantification of fibrous astrocytes in the aging human cerebral cortex. Neurobiol Aging 8:1–6PubMedCrossRefGoogle Scholar
  22. Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B (2007) The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 12:23–35PubMedCrossRefGoogle Scholar
  23. Hentschel F, Schmidbauer M, Detzner U, Blanz B, Schmidt MH (1995) Reversible changes in brain volume in anorexia nervosa. Z Kinder Jugendpsychiatr 23:104–112PubMedGoogle Scholar
  24. Hentschel J, Mockel R, Schlemmer HP, Markus A, Gopel C, Guckel F, Kopke J, Georgi M, Schmidt MH (1999) 1H-MR spectroscopy in anorexia nervosa: the characteristic differences between patients and healthy subjects. Rofo 170:284–289PubMedGoogle Scholar
  25. Herrmann M, Ehrenreich H (2003) Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 21:177–190PubMedGoogle Scholar
  26. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ (2000) Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 31:2670–2677PubMedGoogle Scholar
  27. Herrmann M, Curio N, Jost S, Grubich C, Ebert AD, Fork ML, Synowitz H (2001) Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry 70:95–100PubMedCrossRefGoogle Scholar
  28. Househam KC (1991) Computed tomography of the brain in kwashiorkor: a follow up study. Arch Dis Child 66:623–626PubMedCrossRefGoogle Scholar
  29. Katzman DK, Lambe EK, Mikulis DJ, Ridgley JN, Goldbloom DS, Zipursky RB (1996) Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J Pediatr 129:794–803PubMedCrossRefGoogle Scholar
  30. Katzman DK, Zipursky RB, Lambe EK, Mikulis DJ (1997) A longitudinal magnetic resonance imaging study of brain changes in adolescents with anorexia nervosa. Arch Pediatr Adolesc Med 151:793–797PubMedGoogle Scholar
  31. Kaye WH, Frank GK, Bailer UF, Henry SE, Meltzer CC, Price JC, Mathis CA, Wagner A (2005) Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiol Behav 85:73–81PubMedCrossRefGoogle Scholar
  32. Kerem NC, Katzman DK (2003) Brain structure and function in adolescents with anorexia nervosa. Adolesc Med 14:109–118PubMedGoogle Scholar
  33. Kingston K, Szmukler G, Andrewes D, Tress B, Desmond P (1996) Neuropsychological and structural brain changes in anorexia nervosa before and after refeeding. Psychol Med 26:15–28PubMedCrossRefGoogle Scholar
  34. Kornreich L, Shapira A, Horev G, Danziger Y, Tyano S, Mimouni M (1991) CT and MR evaluation of the brain in patients with anorexia nervosa. AJNR Am J Neuroradiol 12:1213–1216PubMedGoogle Scholar
  35. Korr H (1980) Proliferation of different cell types in the brain. Adv Anat Embryol Cell Biol 61:1–72PubMedGoogle Scholar
  36. Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller D, Geiss HC, Hesse V, Hippel A, von JU, Johnsen D, Korte W, Menner K, Müller G, Müller JM, Niemann-Pilatus A, Remer T, Schaefer F, Wittchen H-U, Zabransky S, Zellner K, Ziegler A, Hebebrand J (2001) Perzentile für den Body Mass Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818Google Scholar
  37. Lambe EK, Katzman DK, Mikulis DJ, Kennedy SH, Zipursky RB (1997) Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch Gen Psychiatry 54:537–542PubMedGoogle Scholar
  38. Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61:1720–1725PubMedGoogle Scholar
  39. Medina-Hernandez V, Ramos-Loyo J, Luquin S, Sanchez LF, Garcia-Estrada J, Navarro-Ruiz A (2007) Increased lipid peroxidation and neuron specific enolase in treatment refractory schizophrenics. J Psychiatr Res 41:652–658PubMedCrossRefGoogle Scholar
  40. Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45:138–141PubMedGoogle Scholar
  41. Mockel R, Schlemmer HP, Guckel F, Gopel C, Becker G, Kopke J, Hentschel F, Schmidt M, Georgi M (1999) 1H-MR spectroscopy in anorexia nervosa: reversible cerebral metabolic changes. Rofo 170:371–377PubMedGoogle Scholar
  42. Neumarker KJ, Bzufka WM, Dudeck U, Hein J, Neumarker U (2000) Are there specific disabilities of number processing in adolescent patients with Anorexia nervosa? Evidence from clinical and neuropsychological data when compared to morphometric measures from magnetic resonance imaging. Eur Child Adolesc Psychiatry 9(Suppl 2):II111–121PubMedGoogle Scholar
  43. Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14:421–429PubMedCrossRefGoogle Scholar
  44. Ohrmann P, Kersting A, Suslow T, Lalee-Mentzel J, Donges US, Fiebich M, Arolt V, Heindel W, Pfleiderer B (2004) Proton magnetic resonance spectroscopy in anorexia nervosa: correlations with cognition. Neuroreport 15:549–553PubMedCrossRefGoogle Scholar
  45. Rastam M, Bjure J, Vestergren E, Uvebrant P, Gillberg IC, Wentz E, Gillberg C (2001) Regional cerebral blood flow in weight-restored anorexia nervosa: a preliminary study. Dev Med Child Neurol 43:239–242PubMedCrossRefGoogle Scholar
  46. Rathner G, Waldherr K (1997) Eating disorder inventory-2. Eine deutschsprachige Validierung mit Normen für weibliche und männliche Jugendliche. Z Klin Psychol Psychiatr Psychother 45:157–182Google Scholar
  47. Rosengren LE, Ahlsen G, Belfrage M, Gillberg C, Haglid KG, Hamberger A (1992) A sensitive ELISA for glial fibrillary acidic protein: application in CSF of children. J Neurosci Methods 44:113–119PubMedCrossRefGoogle Scholar
  48. Rosengren LE, Wikkelso C, Hagberg L (1994) A sensitive ELISA for glial fibrillary acidic protein: application in CSF of adults. J Neurosci Methods 51:197–204PubMedCrossRefGoogle Scholar
  49. Rothermundt M, Ponath G, Arolt V (2004) S100B in schizophrenic psychosis. Int Rev Neurobiol 59:445–470PubMedCrossRefGoogle Scholar
  50. Schlemmer HP, Mockel R, Marcus A, Hentschel F, Gopel C, Becker G, Kopke J, Guckel F, Schmidt MH, Georgi M (1998) Proton magnetic resonance spectroscopy in acute, juvenile anorexia nervosa. Psychiatry Res 82:171–179PubMedCrossRefGoogle Scholar
  51. Schonheit B, Meyer U, Kuchinke J, Schulz E, Neumarker KJ (1996) Morphometrical investigations on lamina-V-pyramidal-neurons in the frontal cortex of a case with anorexia nervosa. J Hirnforsch 37:269–280PubMedGoogle Scholar
  52. Singer JD, Willett JB (2003) Applied longitudinal data analysis: modeling change and event occurrence. Oxford Press, New YorkGoogle Scholar
  53. Steiner J, Bielau H, Bernstein HG, Bogerts B, Wunderlich MT (2006) Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J Neurol Neurosurg Psychiatry 77:1284–1287PubMedCrossRefGoogle Scholar
  54. Swayze VW 2nd, Andersen AE, Andreasen NC, Arndt S, Sato Y, Ziebell S (2003) Brain tissue volume segmentation in patients with anorexia nervosa before and after weight normalization. Int J Eat Disord 33:33–44PubMedCrossRefGoogle Scholar
  55. Swenne I (2004) The significance of routine laboratory analyses in the assessment of teenage girls with eating disorders and weight loss. Eat Weight Disord 9:269–278PubMedGoogle Scholar
  56. Trysberg E, Nylen K, Rosengren LE, Tarkowski A (2003) Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum 48:2881–2887PubMedCrossRefGoogle Scholar
  57. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C (1998) CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology 50:1122–1127PubMedGoogle Scholar
  58. van Engelen BG, Lamers KJ, Gabreels FJ, Wevers RA, van Geel WJ, Borm GF (1992) Age-related changes of neuron-specific enolase, S-100 protein, and myelin basic protein concentrations in cerebrospinal fluid. Clin Chem 38:813–816PubMedGoogle Scholar
  59. Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62:1303–1310PubMedGoogle Scholar
  60. Wagner A, Greer P, Bailer UF, Frank GK, Henry SE, Putnam K, Meltzer CC, Ziolko SK, Hoge J, McConaha C, Kaye WH (2006) Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa. Biol Psychiatry 59:291–293PubMedCrossRefGoogle Scholar
  61. Wallin A, Blennow K, Rosengren LE (1996) Glial fibrillary acidic protein in the cerebrospinal fluid of patients with dementia. Dementia 7:267–272PubMedGoogle Scholar
  62. Wunderlich MT, Lins H, Skalej M, Wallesch CW, Goertler M (2006) Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg 108:558–563PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Stefan Ehrlich
    • 1
  • Roland Burghardt
    • 1
  • Deike Weiss
    • 1
  • Harriet Salbach-Andrae
    • 1
  • Eugenia Maria Craciun
    • 2
  • Klaus Goldhahn
    • 1
  • Burghard F. Klapp
    • 2
  • Ulrike Lehmkuhl
    • 1
  1. 1.Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyCharité, Universitätsmedizin Berlin, CVKBerlinGermany
  2. 2.Department of Psychosomatic MedicineCharité, Universitätsmedizin Berlin, CCMBerlinGermany

Personalised recommendations