Advertisement

Journal of Neural Transmission

, Volume 115, Issue 2, pp 317–321 | Cite as

Allelic variants of SNAP25 in a family-based sample of ADHD

  • T. J. Renner
  • S. Walitza
  • A. Dempfle
  • L. Eckert
  • M. Romanos
  • M. Gerlach
  • H. Schäfer
  • A. Warnke
  • K. P. Lesch
  • C. Jacob
Article

Summary

Altered neurotransmission has been suggested to be a crucial factor in the pathophysiology of attention-deficit/hyperactivity disorder ADHD. Subsequently genes encoding for synaptic proteins have been investigated in candidate gene studies. These proteins mediate the release of neurotransmitters into the synaptic cleft in the process of signal transduction by forming a transient complex, enabling the junction of vesicle and synaptic membrane. One of the core proteins of this complex is the synaptosomal-associated protein 25 (SNAP25). It is one of the most validated candidate genes in ADHD according to meta-analyses. However, differing results were observed in previous studies, some of which were not able to observe association with ADHD. In this study we aimed to investigate association of genetic variants of SNAP25 located in the putative promoter region of SNAP25 and a SNP in intron 8, previously reported to associated with ADHD. A family based design was applied to detect preferential transmission of genetic variants. In our German ADHD sample no preferential transmission of either variant could be observed. Further investigation considering sub-sample analysis regarding response to D-amphetamine could enlight the role of SNAP25 in ADHD.

Keywords: Synapse; gene; neurotransmission; association; monoamines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apa (2000) Diagnostic and statistical manual of mental disorders, p 155Google Scholar
  2. Barkley, RA, Shelton, TL, Crosswait, C, Moorehouse, M, Fletcher, K, Barrett, S, Jenkins, L, Metevia, L 2002Preschool children with disruptive behavior: three-year outcome as a function of adaptive disabilityDev Psychopathol144567PubMedCrossRefGoogle Scholar
  3. Barr, CL, Feng, Y, Wigg, K, Bloom, S, Roberts, W, Malone, M, Schachar, R, Tannock, R, Kennedy, JL 2000Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit/hyperactivity disorderMol Psychiatry5405409PubMedCrossRefGoogle Scholar
  4. Becker, T, Knapp, M 2004A powerful strategy to account for multiple testing in the context of haplotype analysisAm J Hum Genet75561570PubMedCrossRefGoogle Scholar
  5. Brookes, KJ, Knight, J, Xu, X, Asherson, P 2005DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmittersAm J Med Genet B Neuropsychiatr Genet1393337PubMedGoogle Scholar
  6. Brophy, K, Hawi, Z, Kirley, A, Fitzgerald, M, Gill, M 2002Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish populationMol Psychiatry7913917PubMedCrossRefGoogle Scholar
  7. Bruno, KJ, Freet, CS, Twining, RC, Egami, K, Grigson, PS, Hess, EJ 2007Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHDNeurobiol Dis25206216PubMedCrossRefGoogle Scholar
  8. Casey, BJ, Nigg, JT, Durston, S 2007New potential leads in the biology and treatment of attention-deficit/hyperactivity disorderCurr Opin Neurol20119224PubMedCrossRefGoogle Scholar
  9. Chen, YA, Scales, SJ, Patel, SM, Doung, YC, Scheller, RH 1999SNARE complex formation is triggered by Ca2+ and drives membrane fusionCell97165174PubMedCrossRefGoogle Scholar
  10. Elia, J, Borcherding, BG, Rapoport, JL, Keysor, CS 1991Methylphenidate and dextroamphetamine treatments of hyperactivity: are there true nonresponders?Psychiatry Res36141155PubMedCrossRefGoogle Scholar
  11. Faraone, SV, Doyle, AE 2001The nature and heritability of attention-deficit/hyperactivity disorderChild Adolesc Psychiatry Clin N Am10299316viii–ixGoogle Scholar
  12. Faraone, SV, Khan, SA 2006Candidate gene studies of attention-deficit/ hyperactivity disorderJ Clin Psychiatry671320PubMedGoogle Scholar
  13. Faraone, SV, Perlis, RH, Doyle, AE, Smoller, JW, Goralnick, JJ, Holmgren, MA, Sklar, P 2005Molecular genetics of attention-deficit/hyperactivity disorderBiol Psychiatry5713131323PubMedCrossRefGoogle Scholar
  14. Feng, Y, Crosbie, J, Wigg, K, Pathare, T, Ickowicz, A, Schachar, R, Tannock, R, Roberts, W, Malone, M, Swanson, J, Kennedy, JL, Barr, CL 2005The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorderMol Psychiatry109981005973PubMedCrossRefGoogle Scholar
  15. Heiser, P, Friedel, S, Dempfle, A, Konrad, K, Smidt, J, Grabarkiewicz, J, Herpertz-Dahlmann, B, Remschmidt, H, Hebebrand, J 2004Molecular genetic aspects of attention-deficit/hyperactivity disorderNeurosci Biobehav Rev28625641PubMedCrossRefGoogle Scholar
  16. Hess, EJ, Collins, KA, Wilson, MC 1996Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulationJ Neurosci1631043111PubMedGoogle Scholar
  17. Jones, MD, Williams, ME, Hess, EJ 2001Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutantPharmacol Biochem Behav68669676PubMedCrossRefGoogle Scholar
  18. King, S, Griffin, S, Hodges, Z, Weatherly, H, Asseburg, C, Richardson, G, Golder, S, Taylor, E, Drummond, M, Riemsma, R 2006A systematic review and economic model of the effectiveness and cost-effectiveness of methylphenidate, dexamfetamine and atomoxetine for the treatment of attention deficit hyperactivity disorder in children and adolescentsHealth Technol Assess10iiiivxiii-146PubMedGoogle Scholar
  19. Knapp, M, Becker, T 2003Family-based association analysis with tightly linked markersHum Hered5629PubMedCrossRefGoogle Scholar
  20. Kustanovich, V, Merriman, B, Mcgough, J, Mccracken, JT, Smalley, SL, Nelson, SF 2003Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorderMol Psychiatry8309315PubMedCrossRefGoogle Scholar
  21. Lesch, KP, Bengel, D, Heils, A, Sabol, SZ, Greenberg, BD, Petri, S, Benjamin, J, Muller, CR, Hamer, DH, Murphy, DL 1996Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory regionScience27415271531PubMedCrossRefGoogle Scholar
  22. Mehler-Wex, C, Riederer, P, Gerlach, M 2006Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorderNeurotox Res10167179PubMedCrossRefGoogle Scholar
  23. Mill, J, Richards, S, Knight, J, Curran, S, Taylor, E, Asherson, P 2004Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHDMol Psychiatry9801810PubMedCrossRefGoogle Scholar
  24. O’connell, JR, Weeks, DE 1998PedCheck: a program for identification of genotype incompatibilities in linkage analysisAm J Hum Genet63259266PubMedCrossRefGoogle Scholar
  25. Pliszka, SR 2005The neuropsychopharmacology of attention-deficit/ hyperactivity disorderBiol Psychiatry5713851390PubMedCrossRefGoogle Scholar
  26. Russell, VA 2007Neurobiology of animal models of attention-deficit/ hyperactivity disorderJ Neurosci Methods161185198PubMedCrossRefGoogle Scholar
  27. Schimmelmann, BG, Friedel, S, Christiansen, H, Dempfle, A, Hinney, A, Hebebrand, J 2006Genetic findings in attention-deficit and hyperactivity disorder (ADHD)Z Kinder Jugendpsychiatr Psychother34425433PubMedCrossRefGoogle Scholar
  28. Shelton, TL, Barkley, RA, Crosswait, C, Moorehouse, M, Fletcher, K, Barrett, S, Jenkins, L, Metevia, L 2000Multimethod psychoeducational intervention for preschool children with disruptive behavior: two-year post-treatment follow-upJ Abnorm Child Psychol28253266PubMedCrossRefGoogle Scholar
  29. Steffensen, SC, Henriksen, SJ, Wilson, MC 1999Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutantBrain Res847186195PubMedCrossRefGoogle Scholar
  30. Sudhof, TC 2004The synaptic vesicle cycleAnnu Rev Neurosci27509547PubMedCrossRefGoogle Scholar
  31. Tafoya, LC, Mameli, M, Miyashita, T, Guzowski, JF, Valenzuela, CF, Wilson, MC 2006Expression and function of SNAP-25 as a universal SNARE component in GABAergic neuronsJ Neurosci2678267838PubMedCrossRefGoogle Scholar
  32. Wigginton, JE, Abecasis, GR 2005PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping dataBioinformatics2134453447PubMedCrossRefGoogle Scholar
  33. Wilson, MC 2000Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorderNeurosci Biobehav Rev245157PubMedCrossRefGoogle Scholar
  34. Zhao, H, Zhang, S, Merikangas, KR, Trixler, M, Wildenauer, DB, Sun, F, Kidd, KK 2000Transmission/disequilibrium tests using multiple tightly linked markersAm J Hum Genet67936946PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. J. Renner
    • 1
    • 2
  • S. Walitza
    • 1
  • A. Dempfle
    • 3
  • L. Eckert
    • 2
  • M. Romanos
    • 1
  • M. Gerlach
    • 1
  • H. Schäfer
    • 3
  • A. Warnke
    • 1
  • K. P. Lesch
    • 2
  • C. Jacob
    • 2
  1. 1.Department of Child and Adolescent Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany
  2. 2.Molecular and Clinical Psychobiology, Department of Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany
  3. 3.Institute of Medical Biometry and EpidemiologyUniversity of MarburgMarburgGermany

Personalised recommendations