Journal of Neural Transmission

, Volume 115, Issue 1, pp 117–125 | Cite as

Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: evidence from behavioural and neuro-receptor studies

  • C. B. Brink
  • J. D. Clapton
  • B. E. Eagar
  • B. H. Harvey
Article

Summary.

The phosphodiesterase (PDE) 5 inhibitor sildenafil has been shown to display psychotropic actions in humans and animals, and has been used for the treatment of antidepressant-associated erectile dysfunction. However, its effects on the neurobiology of depression are unknown. Nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) inhibition is anti-depressant in animals, and increasing cGMP with sildenafil is anxiogenic in rodents. Substantial cholinergic-nitrergic interaction exists in the brain, while sildenafil shows modulatory actions on cholinergic transmission. Depression is also associated with increased cholinergic drive. Here we report that sildenafil increases muscarinic acetylcholine receptor (mAChR) signaling in human neuroblastoma cells. We also show that fluoxetine (20 mg/kg/day × 7 days), as well as a combination of sildenafil (10 mg/kg/day × 7 days) plus the antimuscarinic atropine (1 mg/kg/day × 7 days) demonstrates significant, comparable antidepressant-like effects in the rat forced swim test (FST) and also reduces cortical β-adrenergic receptor (β-AR) density, while sildenafil or atropine alone did not. Importantly, sildenafil did not modify fluoxetine’s response. Sildenafil thus demonstrates antidepressant-like effects but only after central muscarinic receptor blockade, providing evidence for cholinergic-nitrergic interactions in the neurobiology of depression.

Keywords: Sildenafil; phosphodiesterase type 5 inhibitor; antidepressant, cyclic GMP; nitric oxide; cholinergic; muscarinic acetylcholine receptor; rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, RC, Felisbino, CS, Lopez, MG, Rodrigues, AL, Gabilan, NH 2006Evidence for the involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in miceBehav Brain Res168318322PubMedCrossRefGoogle Scholar
  2. Baldessarini, RJ 2006

    Drug therapy of depression and anxiety disorders

    Brunton, LLLazo, JSParker, KL eds. Goodman & Gilman’s the pharmacological basis of therapeuticsMcGraw-HillNew York429459
    Google Scholar
  3. Bernstein, HG, Stanarius, A, Baumann, B, Henning, H, Krell, D, Danos, P, Falkai, P, Bogerts, B 1998Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenicsNeuroscience83867875PubMedCrossRefGoogle Scholar
  4. Bodenstein, J, Venter, DP, Brink, CB 2005Phenoxybenzamine and benextramine, but not 4-diphenylacetoxy-N-[2-chloroethyl] piperidine hydrochloride, display irreversible noncompetitive antagonism at G protein-coupled receptorsJ Pharmacol Exper Therapeutics314891905CrossRefGoogle Scholar
  5. Bradford, MM 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254PubMedCrossRefGoogle Scholar
  6. Brink, CB, Viljoen, SL, de Kock, SE, Stein, DJ, Harvey, BH 2004Effects of myo-inositol versus fluoxetine and imipramine pretreatments on serotonin 5HT2A and muscarinic acetylcholine receptors in human neuroblastoma cellsMetab Brain Dis195170PubMedCrossRefGoogle Scholar
  7. Chau, DT, Rada, P, Kosloff, RA, Taylor, JL, Hoebel, BG 2001Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local M1 antagonist in the Porsolt swim testNeuroscience104791798PubMedCrossRefGoogle Scholar
  8. Chrapko, W, Jurasz, P, Radomski, MW, Archer, SL, Newman, SC, Baker, G, Lara, N, Le Melledo, JM 2006Alteration of decreased plasma NO metabolites and platelet NO synthase activity by paroxetine in depressed patientsNeuropsychopharmacology3112861293PubMedGoogle Scholar
  9. Cryan, JF, Markou, A, Lucki, I 2002Assessing antidepressant activity in rodents: recent developments and future needsTrends Pharmacol Sci23238245PubMedCrossRefGoogle Scholar
  10. Daws, LC, Overstreet, DH 1999Ontogeny of muscarinic cholinergic supersensitivity in the Flinders Sensitive Line ratPharmacol Biochem Behav62367380PubMedCrossRefGoogle Scholar
  11. Detke, MJ, Lucki, I 1995Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depthBehav Brain Res734346CrossRefGoogle Scholar
  12. Devan, BD, Sierra-Mercado, D,Jr, Jimenez, M, Bowker, JL, Duffy, KB, Spangler, EL, Ingram, DK 2004Phosphodiesterase inhibition by sildenafil citrate attenuates the learning impairment induced by blockade of cholinergic muscarinic receptors in ratsPharmacol Biochem Behav79691699PubMedCrossRefGoogle Scholar
  13. Dilsaver, SC 1986Cholinergic mechanisms in depressionBrain Res396285316PubMedGoogle Scholar
  14. Eroglu, L, Caglayan, B 1997Anxiolytic and antidepressant properties of methylene blue in animal modelsPharmacol Res36381385PubMedCrossRefGoogle Scholar
  15. Ferrari, F, Ottani, A, Giuliani, D 2002Influence of sildenafil on central dopamine-mediated behaviour in male ratsLife Sci7015011508PubMedCrossRefGoogle Scholar
  16. Fritze, J 1993The adrenergic-cholinergic imbalance hypothesis of depression: a review and a perspectiveRev Neurosci46393PubMedGoogle Scholar
  17. Furey, ML, Drevets, WC 2006Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trialArch Gen Psychiatry6311211129PubMedCrossRefGoogle Scholar
  18. Gillin, JC, Lauriello, J, Kelsoe, JR, Rapaport, M, Golshan, S, Kenny, WM, Sutton, L 1995No antidepressant effect of biperiden compared with placebo in depression: a double-blind 6-week clinical trialPsychiatry Res5899105PubMedCrossRefGoogle Scholar
  19. Harkin, A, Connor, TJ, Burns, MP, Kelly, JP 2004Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming testEur Neuropsychopharmacol14274281PubMedCrossRefGoogle Scholar
  20. Harkin, AJ, Bruce, KH, Craft, B, Paul, IA 1999Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim testEur J Pharmacol372207213PubMedCrossRefGoogle Scholar
  21. Harvey, B, Carstens, M, Taljaard, J 1990Lithium modulation of cortical cyclic nucleotides: evidence for the Yin-Yang hypothesisEur J Pharmacol175129136PubMedCrossRefGoogle Scholar
  22. Harvey, BH, Bothma, T, Nel, A, Wegener, G, Stein, DJ 2005Involvement of the NMDA receptor, NO-cyclic GMP and nuclear factor K-beta in an animal model of repeated traumaHum Psychopharmacol20367373PubMedCrossRefGoogle Scholar
  23. Harvey, BH, Carstens, ME, Taljaard, JJ 1994Evidence that lithium induces a glutamatergic: nitric oxide-mediated response in rat brainNeurochem Res19469474PubMedCrossRefGoogle Scholar
  24. Harvey, BH, Jonker, LP, Brand, L, Heenop, M, Stein, DJ 2002NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampusLife Sci714354PubMedCrossRefGoogle Scholar
  25. Harvey, BH, Retief, R, Korff, A, Wegener, G 2006Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT 2A/C-receptorsMetab Brain Dis21211220PubMedCrossRefGoogle Scholar
  26. Heiberg, IL, Wegener, G, Rosenberg, R 2002Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in ratsBehav Brain Res134479484PubMedCrossRefGoogle Scholar
  27. Janowsky, DS, el-Yousef, MK, Davis, JM, Sekerke, HJ 1972A cholinergic-adrenergic hypothesis of mania and depressionLancet2632635PubMedCrossRefGoogle Scholar
  28. Kaufer, D, Friedman, A, Seidman, S, Soreq, H 1998Acute stress facilitates long-lasting changes in cholinergic gene expressionNature393373377PubMedCrossRefGoogle Scholar
  29. Kukkonen, J, Ojala, P, Nasman, J, Hamalainen, H, Heikkila, J, Akerman, KE 1992Muscarinic receptor subtypes in human neuroblastoma cell lines SH-SY5Y and IMR-32 as determined by receptor binding, Ca++ mobilization and northern blottingJ Pharmacol Exp Ther26314871493PubMedGoogle Scholar
  30. Kurt, M, Bilge, SS, Aksoz, E, Kukula, O, Celik, S, Kesim, Y 2004Effect of sildenafil on anxiety in the plus-maze test in micePol J Pharmacol56353357PubMedGoogle Scholar
  31. Manji, HK, Quiroz, JA, Sporn, J, Payne, JL, Denicoff, K, Gray, A, Zarate, CA,Jr, Charney, DS 2003Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depressionBiol Psychiatry53707742PubMedCrossRefGoogle Scholar
  32. Meyerson, LR, Wennogle, LP, Abel, MS, Coupet, J, Lippa, AS, Rauh, CE, Beer, B 1982Human brain receptor alterations in suicide victimsPharmacol Biochem Behav17159163PubMedCrossRefGoogle Scholar
  33. Milman, HA, Arnold, SB 2002Neurologic, psychological, and aggressive disturbances with sildenafilAnn Pharmacother3611291134PubMedCrossRefGoogle Scholar
  34. O’Hare, E, Weldon, DT, Bettin, K, Cleary, J, Mach, JR,Jr 1997Serum anticholinergic activity and behavior following atropine sulfate administration in the ratPharmacol Biochem Behav56151154PubMedCrossRefGoogle Scholar
  35. Pagani, S, Mirtella, D, Mencarelli, R, Rodriguez, D, Cingolani, M 2005Postmortem distribution of sildenafil in histological materialJ Anal Toxicol29254257PubMedGoogle Scholar
  36. Patil, CS, Jain, NK, Singh, VP, Kulkarni, SK 2004Cholinergic-NO-cGMP mediation of sildenafil-induced antinociceptionInd J Exp Biol42361367Google Scholar
  37. Paul, IA, Skolnick, P 2003Glutamate and depression: clinical and preclinical studiesAnn N Y Acad Sci1003250272PubMedCrossRefGoogle Scholar
  38. Porsolt, RD, Anton, G, Blavet, N, Jalfre, M 1978Behavioural despair in rats: a new model sensitive to antidepressant treatmentsEur J Pharmacol47379391PubMedCrossRefGoogle Scholar
  39. Porsolt, RD, Brossard, G, Hautbois, C, Roux, S 2000

    Models of affective illness: forced swimming and tail suspension tests in rodents

    Enna, SJWilliams, MBarret, JFFerkany, JWKenakin, TPorsolt, RD eds. Current protocols in pharmacologyWileyNew York5.8.15.8.9
    Google Scholar
  40. Prast, H, Philippu, A 2001Nitric oxide as modulator of neuronal functionProg Neurobiol645168PubMedCrossRefGoogle Scholar
  41. Prickaerts, J, van Staveren, WC, Sik, A, Markerink-van, IM, Niewohner, U, van der Staay, FJ, Blokland, A, de, VJ 2002Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the ratNeuroscience113351361PubMedCrossRefGoogle Scholar
  42. Reneric, JP, Bouvard, M, Stinus, L 2001Idazoxan and 8-OH-DPAT modify the behavioral effects induced by either NA, or 5-HT, or dual NA/5-HT reuptake inhibition in the rat forced swimming testNeuropsychopharmacology24379390PubMedCrossRefGoogle Scholar
  43. Reneric, JP, Bouvard, M, Stinus, L 2002aIn the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugsBehav Brain Res136521532CrossRefGoogle Scholar
  44. Reneric, JP, Bouvard, M, Stinus, L 2002bIn the rat forced swimming test, NA-system mediated interactions may prevent the 5-HT properties of some subacute antidepressant treatments being expressedEur Neuropsychopharmacol12159171CrossRefGoogle Scholar
  45. Sethy, VH, Day, JS, Cooper, MM 1988Dose-dependent down-regulation of beta-adrenergic receptors after chronic intravenous infusion of antidepressantsProg Neuropsychopharmacol Biol Psychiatry12673682PubMedCrossRefGoogle Scholar
  46. Shytle, RD, Silver, AA, Lukas, RJ, Newman, MB, Sheehan, DV, Sanberg, PR 2002Nicotinic acetylcholine receptors as targets for antidepressantsMol Psychiatry7525535PubMedCrossRefGoogle Scholar
  47. Slowiejko, DM, McEwen, EL, Ernst, SA, Fisher, SK 1996Muscarinic receptor sequestration in SH-SY5Y neuroblastoma cells is inhibited when clathrin distribution is perturbedJ Neurochem66186196PubMedCrossRefGoogle Scholar
  48. Stahl, SM 1996Essential psychopharmacologyCambridge University PressCambridgeGoogle Scholar
  49. Suranyi-Cadotte, BE, Dam, TV, Bodnoff, S, Quirion, R 1985Variability of chronic antidepressant treatments on beta-adrenergic receptor sitesProg Neuropsychopharmacol Biol Psychiatry9765768PubMedCrossRefGoogle Scholar
  50. Thummel, KE, Shen, DD, Isoherranen, N, Smith, HE 2006

    Design and optimization of dosage regimes: pharmacokinetic data

    Brunton, LLLazo, JSParker, KL eds. Goodman & Gilman’s the pharmacological basis of therapeuticsMcGraw-HillNew York17871888
    Google Scholar
  51. Tignol, J, Furlan, PM, Gomez-Beneyto, M, Opsomer, R, Schreiber, W, Sweeney, M, Wohlhuter, C 2004Efficacy of sildenafil citrate (Viagra) for the treatment of erectile dysfunction in men in remission from depressionInt Clin Psychopharmacol19191199PubMedCrossRefGoogle Scholar
  52. van Staveren, WC, Markerink-van, IM, Steinbusch, HW, Behrends, S, de, VJ 2005Localization and characterization of cGMP-immunoreactive structures in rat brain slices after NO-dependent and NO-independent stimulation of soluble guanylyl cyclaseBrain Res10367789PubMedCrossRefGoogle Scholar
  53. van Staveren, WC, Steinbusch, HW, Markerink-van, IM, Repaske, DR, Goy, MF, Kotera, J, Omori, K, Beavo, JA, de, VJ 2003mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brainJ Comp Neurol467566580PubMedCrossRefGoogle Scholar
  54. Volke, V, Wegener, G, Vasar, E 2003Augmentation of the NO-cGMP cascade induces anxiogenic-like effect in miceJ Physiol Pharmacol54653660PubMedGoogle Scholar
  55. Wegener, G, Volke, V, Harvey, BH, Rosenberg, R 2003Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activityBrain Res959128134PubMedCrossRefGoogle Scholar
  56. Wong, ML, Whelan, F, Deloukas, P, Whittaker, P, Delgado, M, Cantor, RM, McCann, SM, Licinio, J 2006Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment responseProc Natl Acad Sci USA1031512415129PubMedCrossRefGoogle Scholar
  57. Xu, Y, Ku, BS, Yao, HY, Lin, YH, Ma, X, Zhang, YH, Li, XJ 2005Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in ratsPharmacol Biochem Behav82200206PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. B. Brink
    • 1
  • J. D. Clapton
    • 1
  • B. E. Eagar
    • 1
  • B. H. Harvey
    • 1
  1. 1.Unit for Drug Research and Development, Division of PharmacologyNorth-West University (PUK)PotchefstroomSouth Africa

Personalised recommendations