Advertisement

Journal of Neural Transmission

, Volume 114, Issue 5, pp 555–561 | Cite as

Mental fatigue-induced decrease in levels of several plasma amino acids

  • K. Mizuno
  • M. Tanaka
  • S. Nozaki
  • K. Yamaguti
  • H. Mizuma
  • T. Sasabe
  • T. Sugino
  • T. Shirai
  • Y. Kataoka
  • Y. Kajimoto
  • H. Kuratsune
  • O. Kajimoto
  • Y. Watanabe
Article

Summary.

To investigate the relation between plasma amino acid levels and mental fatigue, we measured the plasma concentrations of 20 amino acids in 9 healthy volunteers before and after a fatigue-inducing mental task session for 8 hr. As fatigue-inducing mental tasks, the subjects performed an advanced trail making test, a Japanese KANA pick up test, and a mirror drawing test. As a control, 8-hr relaxation session was performed in the same subjects at an interval of 4 weeks. Immediately after the fatigue session, the plasma levels of branched-chain amino acids, tyrosine, cysteine, methionine, lysine, and arginine were below those after a relaxation session. The values for other blood parameters including total protein, albumin, glucose, and total cholesterol did not show any differences between the 2 sessions. These results indicate that mental fatigue may be characterized by a decrease in the plasma level of these amino acids.

Keywords: Mental fatigue, amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, SP, Davis, JM, Ahlborn, EN 1992Effect of increased brain serotonergic activity on endurance performance in the ratActa Physiol Scand1457576PubMedGoogle Scholar
  2. Bailey, SP, Davis, JM, Ahlborn, EN 1993Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigueJ Appl Physiol7430063012PubMedGoogle Scholar
  3. Blomstrand, E 2001Amino acids and central fatigueAmino Acids202534PubMedCrossRefGoogle Scholar
  4. Blomstrand, E, Perrett, D, Parry-Billings, M, Newsholme, EA 1989Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions of the ratActa Physiol Scand136473481PubMedCrossRefGoogle Scholar
  5. Blomstrand, E, Hassmen, P, Ekblom, B, Newsholme, EA 1991Administration of branched-chain amino acids during sustained exercise-effects on performance and on plasma concentration of some amino acidsEur J Appl Physiol638388CrossRefGoogle Scholar
  6. Bredt, DS, Snyder, SH 1994Nitric oxide: a physiologic messenger moleculeAnnu Rev Biochem63175195PubMedCrossRefGoogle Scholar
  7. Chaouloff, F, Laude, D, Elghozi, JL 1989Physical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminalsJ Neural Transm78121130PubMedCrossRefGoogle Scholar
  8. Chaudhuri, A, Behan, PO 2000Fatigue and basal gangliaJ Neurol Sci1793442PubMedCrossRefGoogle Scholar
  9. Chaudhuri, A, Behan, PO 2004Fatigue in neurological disordersLancet363978988PubMedCrossRefGoogle Scholar
  10. Ellenbogen, MA, Young, SN, Dean, P, Palmour, RM, Benkelfat, C 1996Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stabilityNeuropsychopharmacology15465474PubMedCrossRefGoogle Scholar
  11. Fitts, RH 1994Cellular mechanisms of muscle fatiguePhysiol Rev744994PubMedGoogle Scholar
  12. Gilad, GM, Gilad, VH, Wyatt, RJ, Tizabi, Y 1990Region-selective stress-induced increase of glutamate uptake and release in rat forebrainBrain Res525335338PubMedCrossRefGoogle Scholar
  13. Imperato, A, Puglisi-Allegra, S, Casolini, P, Angelucci, L 1991Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axisBrain Res538111117PubMedCrossRefGoogle Scholar
  14. Kajimoto O, Shimizu A, Takahashi T, Iwase M, Takahashi R, Kuratsune H, Watanabe Y (2007) ATMT: a computer-assisted system for assessment of fatigue -Development of advanced trail making test for evaluating mental function. J Chron Fatigue Syndrome (in press)Google Scholar
  15. Kranich, O, Dringen, R, Sandberg, M, Hamprecht, B 1998Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystineGlia221118PubMedCrossRefGoogle Scholar
  16. Lehmann, M, Huonker, M, Dimeo, F, Heinz, N, Gastmann, U, Treis, N, Steinacker, JM, Keul, J, Kajewski, R, Haussinger, D 1995Serum amino acid concentration in nine athletes before and after the 1993 Colmar Ultra TriathlonInt J Sports Med16155159PubMedCrossRefGoogle Scholar
  17. Leyton, M, Dagher, A, Boileau, I, Casey, K, Baker, GB, Diksic, M, Gunn, R, Young, SN, Benkelfat, C 2004Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: a PET/[11C]raclopride study in healthy menNeuropsychopharmacology29427432PubMedGoogle Scholar
  18. Matsumoto, K, Yobimoto, K, Huong, NT, Abdel-Fattah, M, Van, HT, Watanabe, H 1999Psychological stress-induced enhancement of brain lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drugs in miceBrain Res8397484PubMedCrossRefGoogle Scholar
  19. Moghaddam, B 1993Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal gangliaJ Neurochem6016501657PubMedCrossRefGoogle Scholar
  20. Nakahara, D, Nakamura, M 1999Differential effect of immobilization stress on in vivo synthesis rate of monoamines in medial prefrontal cortex and nucleus accumbens of conscious ratsSynapse32238242PubMedCrossRefGoogle Scholar
  21. Oldendorf, WH 1971Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injectionAm J Physiol22116291639PubMedGoogle Scholar
  22. Parcell, S 2002Sulfur in human nutrition and applications in medicineAltern Med Rev72244PubMedGoogle Scholar
  23. Pardridge, WM 1977Kinetics of competitive inhibition of neutral amino acid transport across the blood–brain barrierJ Neurochem28103108PubMedCrossRefGoogle Scholar
  24. Reitan, RM 1955The relation of the trail making test to organic brain damageJ Consult Psychol19393394PubMedCrossRefGoogle Scholar
  25. Wurtman, RJ, Larin, F, Mostafapour, S, Fernstrom, JD 1974Brain catechol synthesis: control by brain tyrosine concentrationScience185183184PubMedCrossRefGoogle Scholar
  26. Wyss, M, Kaddurah, DR 2000Creatine and creatinine metabolismPhysiol Rev8011071213PubMedGoogle Scholar
  27. Yamamoto, K 1992Analysis of cognitive function and regional cerebral blood flow in Parkinson’s disease by 123I-IMP SPECT (in Japanese)Rinsho Shinkeigaku3217PubMedGoogle Scholar
  28. Yoshiuchi, K, Nomura, S, Ando, K, Ohtake, T, Shimosawa, T, Kumano, H, Kuboki, T, Suematsu, H, Fujita, T 1997Hemodynamic and endocrine responsiveness to mental arithmetic task and mirror drawing test in patients with essential hypertensionAm J Hypertens10243249PubMedCrossRefGoogle Scholar
  29. Yudkoff, M 1997Brain metabolism of branched-chain amino acidsGlia219298PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • K. Mizuno
    • 1
    • 2
  • M. Tanaka
    • 1
    • 2
  • S. Nozaki
    • 1
    • 2
  • K. Yamaguti
    • 1
    • 2
  • H. Mizuma
    • 1
  • T. Sasabe
    • 1
    • 3
  • T. Sugino
    • 4
  • T. Shirai
    • 4
  • Y. Kataoka
    • 1
    • 2
  • Y. Kajimoto
    • 4
  • H. Kuratsune
    • 5
  • O. Kajimoto
    • 4
    • 6
  • Y. Watanabe
    • 1
    • 2
  1. 1.Department of PhysiologyOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.The 21st Century COE Program “Base to Overcome Fatigue” (from the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government)OsakaJapan
  3. 3.Department of Oral PhysiologyOsaka University Graduate School of DentistryOsakaJapan
  4. 4.Soiken IncorporationOsakaJapan
  5. 5.Department of Health Science, Faculty of Health Science for WelfareKansai University of Welfare SciencesOsakaJapan
  6. 6.Center for Health CareOsaka University of Foreign StudyOsakaJapan

Personalised recommendations