Journal of Neural Transmission

, Volume 114, Issue 1, pp 21–31

Aβ peptides as one of the crucial volume transmission signals in the trophic units and their interactions with homocysteine. Physiological implications and relevance for Alzheimer’s disease

  • L. F. Agnati
  • S. Genedani
  • G. Leo
  • A. Forni
  • A. S. Woods
  • M. Filaferro
  • R. Franco
  • K. Fuxe
Article

Summary.

Amyloid peptides (Aβ) can operate as volume transmission (VT) signals since they are continuously released from cells of the central nervous system and diffuse in the extra-cellular space of the brain. They have both regulatory and trophic functions on cellular networks. In agreement with Aβ regulatory actions on glial-neuronal networks, the present paper reports new findings demonstrating that intrastriatal injections of Aβ peptides reduce striatal tyrosine hydroxylase, increase striatal GFAP immunoreactivities and lower pain threshold in experimental rats. Furthermore, it has been demonstrated that exogenous homocysteine (Hcy) binds Aβ(1-40) favouring its β-sheet conformation both in vitro and in vivo and hence the formation of β-fibrils and development of neurotoxicity.

Thus, the hypothesis is discussed that Aβ peptides represent crucial VT-signals in the brain and their action is altered by dysmetabolic signals such as high Hcy extra-cellular levels, known to be an important risk factor for Alzheimer’s disease.

Keywords: β-amyloid peptides, homocysteine, volume transmission, pain threshold, Alzheimer’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati, LF, Fuxe, K 1985Quantitative Neuroanatomy in Transmitter ResearchMacMillan PressLondon91112Google Scholar
  2. Agnati, LF, Fuxe, K 2000Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing’s B-type machineProg Brain Res125319PubMedCrossRefGoogle Scholar
  3. Agnati, LF, Cortelli, P, Pettersson, R, Fuxe, K 1995The concept of trophic units in the central nervous systemProg Neurobiol46561574PubMedCrossRefGoogle Scholar
  4. Agnati, LF, Fuxe, K, Janson, AM, Zoli, M, Härfstrand, A,  et al. 1986

    Quantitative analysis: computer-assisted morphometry and microdensitometry applied to immunostained neurones

    Polak, JM eds. Immunocytochemistry-Modern Methods and Applications2WrightBristol205224
    Google Scholar
  5. Agnati, LF, Genedani, S, Rasio, G, Galantucci, M, Saltini, S, Filaferro, M, Franco, R, Mora, F, Ferrè, S, Fuxe, K 2005aStudies on homocysteine plasma levels in Alzheimer’s patients. Relevance for neurodegenerationJ Neural Transm112163169CrossRefGoogle Scholar
  6. Agnati, LF, Leo, G, Vergoni, AV, Martínez, E, Hockemeyer, J, Lluis, C, Franco, R, Fuxe, K, Ferré, S 2004Neuroprotective Effect of L-DOPA Co-administered with the Adenosine A2A Receptor Agonist CGS 21680 in an Animal Model of Parkinson’s DiseaseBrain Res Bull64155164PubMedCrossRefGoogle Scholar
  7. Altier, N, Stewart, J 1999The role of dopamine in the nucleus accumbens in analgesiaLife Sci6522692287PubMedCrossRefGoogle Scholar
  8. Atwood, CS, Obrenovich, ME, Liu, T, Chan, H, Perry, G, Smith, MA, Martins, RN 2003Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-betaBrain Res Brain Res Rev43116PubMedCrossRefGoogle Scholar
  9. Braz, JM, Nassar, MA, Wood, JN, Basbaum, AI 2005Parallel “pain” pathways arise from subpopulations of primary afferent nociceptorNeuron47787793PubMedCrossRefGoogle Scholar
  10. Caille, I, Allinquant, B, Dupont, E, Bouillot, C, Langer, A, Muller, U, Prochiantz, A 2004Soluble APP regulates proliferation of progenitor cells in the adult subventricular zoneDevelopment13121732181PubMedCrossRefGoogle Scholar
  11. Chang, KA, Suh, YH 2005Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the β-amyloid precursor protein in Alzheimer’s diseaseJ Pharmacol Sci97461471PubMedCrossRefGoogle Scholar
  12. Chudler, EH, Dong, WK 1995The role of basal ganglia in nociception and painPain60338PubMedCrossRefGoogle Scholar
  13. Conover, WJ 1971Practical Nonparametric StatisticsJohn WileyNew YorkGoogle Scholar
  14. DeMattos, RB, Cirrito, JR, Parsadanian, M, May, PC, O’Dell, MA, Taylor, JW, Harmony, JA, Aronow, BJ, Bales, KR, Paul, SM, Holtzman, DM 2004ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extra-cellular Abeta metabolism in vivoNeuron41193202PubMedCrossRefGoogle Scholar
  15. Esteban, JA 2004Living with the enemy: a physiological role for the beta-amyloid peptideTrends Neurosci2713PubMedCrossRefGoogle Scholar
  16. Fezoui, Y, Teplow, DB 2002Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilizationJ Biol Chem2773694836954PubMedCrossRefGoogle Scholar
  17. Fu, W, Dudman, NPB, Perry, MA, Young, K, Wang, XL 2000Interrelations between plasma homocysteine and intracellular S-adenosylhomocysteineBiochem Biophys Res Commun2714753PubMedCrossRefGoogle Scholar
  18. Genedani, S, Rasio, G, Cortelli, P, Antonelli, F, Guidolin, D, Galantucci, M, Fuxe, K, Agnati, LF 2004Studies on homocysteine and dehydroepiandrsterone sulphate plasma levels in Alzheimer’s disease patients and in Parkinson’s disease patientsNeurotox Res6327332PubMedCrossRefGoogle Scholar
  19. Hargreaves, K, Dubner, R, Brown, F, Flores, C, Joris, J 1998A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesiaPain327788CrossRefGoogle Scholar
  20. Ho, PI, Collins, SC, Dhitavat, S, Ortiz, D, Ashline, D, Rogers, E, Shea, TB 2001Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stressJ Neurochem78249253PubMedCrossRefGoogle Scholar
  21. Irintchev, A, Rollenhagen, A, Troncoso, E, Kiss, JZ, Schachner, M 2005Structural and functional aberrations in the cerebral cortex of tenascin-C deficient miceCereb Cortex15950962PubMedCrossRefGoogle Scholar
  22. Kamenetz, F, Tomita, T, Hsieh, H, Seabrook, G, Borchelet, D, Iwatsubo, T, Sisodia, S, Malinow, R 2003APP processing and synaptic functionNeuron37925937PubMedCrossRefGoogle Scholar
  23. Kirkitadze, MD, Condron, MM, Teplow, DB 2001Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesisJ Mol Biol31211031119PubMedCrossRefGoogle Scholar
  24. Klingner, M, Apelt, J, Kumar, A, Sorger, D, Sabri, O, Steinbach, J, Scheunemann, M, Schliebs, R 2003Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with beta-amyloid plaque pathologyInt J Dev Neurosci21357369PubMedCrossRefGoogle Scholar
  25. Lee, HG, Castellani, RJ, Zhu, X, Perry, G, Smith, MA 2005Amyloid-β in Alzheimer’s disease: the horse or the cart? Pathogenetic or protective?Int J Exp Path86133138CrossRefGoogle Scholar
  26. Lesnè, S, Koh, MT, Kotilinek, L, Kayed, R, Glabe, CG, Yang, A, Gallagher, M, Ashe, KH 2006A specific amyloid-beta protein assembly in the brain impairs memoryNature440352357PubMedCrossRefGoogle Scholar
  27. Lilien, J, Arregui, C, Li, H, Balsamo, J 1999The juxtamembrane domain of cadherin regulates integrin-mediated adhesion and neurite outgrowthJ Neurosci Res58727734PubMedCrossRefGoogle Scholar
  28. Lipton, SA, Kim, WK, Choi, YB, Kumar, S, D’Emilia, DM, Rayudu, PV, Arnelle, DR, Stamler, JS 1997Neurotoxicity associated with dual actions of homocysteine at the N-methyl-daspartate receptorProc Natl Acad Sci USA9459235928PubMedCrossRefGoogle Scholar
  29. Makin, OS, Atkins, E, Sikorski, P, Johansson, J, Serpell, LC 2005Molecular basis for amyloid fibril formation and stabilityProc Natl Acad Sci USA102315320PubMedCrossRefGoogle Scholar
  30. Mattson, MP, Shea, TB 2003Folate and homocysteine metabolism in neural plasticity and neurodegenerative disordersTrends Neurosci26137146PubMedCrossRefGoogle Scholar
  31. Nicholson, C, Sykova, E 1998Extra-cellular space structure revealed by diffusion analysisTrends Neurosci21207215PubMedCrossRefGoogle Scholar
  32. Pfeiffer, CM, Huff, DL, Gunter, EW 1999Rapid and accurate HPLC assay for plasma total homocysteine and cysteine in a clinical laboratory settingClin Chem45290292PubMedGoogle Scholar
  33. Pike, CJ, Walencewicz, AJ, Glabe, CG, Cotman, CW 1991In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicityBrain Res563311314PubMedCrossRefGoogle Scholar
  34. Roher, AE, Baudry, J, Chaney, MO, Kuo, YM, Stine, WB, Emmerling, MR 2000Oligomerizaiton and fibril asssembly of the amyloid-beta proteinBiochim Biophys Acta15023143PubMedGoogle Scholar
  35. Roitbak, T, Syková, E 1999Diffusion barriers evoked in the rat cortex by reactive astrogliosisGlia284048PubMedCrossRefGoogle Scholar
  36. Rosland, JH, Hunskaar, S, Broch, OJ, Hole, K 1992Acute and long term effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in tests of nociception in micePharmacol Toxicol703137PubMedCrossRefGoogle Scholar
  37. Ross, CA, Poirier, MA 2005What is the role of protein aggregation in neurodegeneration?Nat Rev Mol Cell Biol6891898PubMedCrossRefGoogle Scholar
  38. Schliebs, R 2005Basal forebrain cholinergic dysfunction in Alzheimer’s disease – Interrelationships with β-amyloid, inflammation and neurotrphin signalingNeurochem Res30895908PubMedCrossRefGoogle Scholar
  39. Selkoe, DJ 2003Aging, amyloid and Alzheimer’s disease: A perspective in honor of Carl CotmanNeurochemical Res2817051713CrossRefGoogle Scholar
  40. Seshadri, S, Beiser, A, Selhub, J, Jacques, PF, Rosenberg, IH, D’Agostino, RB, Wilson, PW, Wolf, PA 2002Plasma homocysteine as a risk factor for dementia and Alzheimer’s diseaseNew Engl J Med346476483PubMedCrossRefGoogle Scholar
  41. Sisodia, SS 1999Alzheimer’s disease: perspectives for the new millenniumJ Clin Invest10411691170PubMedCrossRefGoogle Scholar
  42. Stefani, M 2004Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein worldBiochim Biophys Acta1739525PubMedGoogle Scholar
  43. Stephan, A, Laroche, S, Davis, S 2001Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficitsJ Neurosci2157035714PubMedGoogle Scholar
  44. Sternberger, LA, Sternberger, NH 1986The unlabeled antibody method: comparison of peroxidase-antiperoxidase with avidin-biotin complex by a new method of quantificationJ Histochem Cytochem34599605PubMedGoogle Scholar
  45. Takeda, R, Ikeda, T, Tsuda, F, Abe, H, Hashiguchi, H, Ishida, Y, Nishimori, T 2005Unilateral lesions of mesostriatal dopaminergic pathway alters the withdrawal response of the rat hindpaw to mechanical stimulationNeurosci Res523136PubMedCrossRefGoogle Scholar
  46. Woods, AS, Ferre, S 2005The Amazing Stability of the Arginine-Phosphate Electrostatic InteractionJ Proteome Res413971402PubMedCrossRefGoogle Scholar
  47. Woods, AS, Huestis, MA 2001A Study of Peptide Interaction by MALDIJASMS128896Google Scholar
  48. Zlokovic, BV 2005Neurovascular mechanisms of Alzheimer’s neurodegenerationTrends Neurosci28202208PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L. F. Agnati
    • 1
    • 4
  • S. Genedani
    • 2
  • G. Leo
    • 1
  • A. Forni
    • 3
  • A. S. Woods
    • 5
  • M. Filaferro
    • 2
  • R. Franco
    • 6
  • K. Fuxe
    • 7
  1. 1.Department of Biomedical Sciences, Section of PhysiologyUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Biomedical Sciences, Section of PharmacologyUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of ChemistryUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.IRCCS San CamilloVeneziaItaly
  5. 5.Department of Health and Human ServicesNational Institute on Drug AbuseBaltimoreUSA
  6. 6.Department of Biochemistry and Molecular BiologyUniversity of BarcelonaBarcelonaSpain
  7. 7.Department of NeurosciencesKarolinska InstitutetStockholmSweden

Personalised recommendations