Journal of Neural Transmission

, Volume 113, Issue 11, pp 1791–1801 | Cite as

Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer’s disease following chronic donepezil treatment

  • T. Darreh-Shori
  • L. Meurling
  • T. Pettersson
  • K. Hugosson
  • E. Hellström-Lindahl
  • N. Andreasen
  • L. Minthon
  • A. Nordberg
Article

Summary.

Objectives. To evaluate long-term changes in acetylcholinesterase (AChE) activity in CSF and blood following donepezil treatment in relation to the concentration of donepezil and cognition in AD patients.

Methods. CSF or blood (or both) samples of a total of 104 patients with mild AD were used [MMSE score 23 ± 0.4; age 75 ± 1 years (mean ± SEM); n = 53 for CSF and n = 51 for plasma/red blood cell (RBC) samples]. The patients were treated with 5 or 10 mg/day donepezil and clinically followed for 2 years. The CSF and RBC AChE activities were measured by the Ellman’s direct colorimetric assay. Protein levels of two variants of AChE (“read-through” AChE-R and synaptic AChE-S) were determined by an ELISA-like method.

Results. The plasma donepezil concentration was dose-dependent (between 30 and 60 ng/mL in the 5-mg and 10-mg group, respectively). The CSF donepezil concentration was 10 times lower than the plasma level and showed dose- and time-dependent kinetics. The RBC AChE inhibition was moderate (19–29%). CSF AChE-S inhibition was estimated to 30–40% in the 5-mg and 45–55% in the 10-mg group. Positive correlations were observed between the CSF AChE inhibition, an increased protein level of the AChE-R variant and MMSE examination. Patients with high AChE inhibition (≥45%) showed a stabilized MMSE test result after up to two years, while a significant decline was observed in AD patients with lower AChE inhibition (≤30%).

Conclusions. An increase in the protein level of the AChE-R variant corresponded to a high AChE inhibition in CSF and favored less cognitive deterioration.

Keywords: Alzheimer’s disease, acetylcholinesterase, acetylcholinesterase splice variants, cholinesterase inhibitors, cerebrospinal fluid (CSF), red blood cells (RBC), chronic treatment, donepezil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, N, Blennow, K, Sjodin, C, Winblad, B, Svardsudd, K 1999Prevalence and incidence of clinically diagnosed memory impairments in a geographically defined general population in Sweden. The Pitea Dementia ProjectNeuroepidemiology18144155PubMedCrossRefGoogle Scholar
  2. Bohnen, NI, Kaufer, DI, Hendrickson, R, Ivanco, LS, Lopresti, BJ, Koeppe, RA, Meltzer, CC, Constantine, G, Davis, JG, Mathis, CA, Dekosky, ST, Moore, RY 2005Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s diseaseJ Neurol Neurosurg Psychiatry76315319PubMedCrossRefGoogle Scholar
  3. Brimijoin, S, Hammond, P 1988Butyrylcholinesterase in human brain and acetylcholinesterase in human plasma: trace enzymes measured by two-site immunoassayJ Neurochem5112271231PubMedCrossRefGoogle Scholar
  4. Darreh-Shori T (2006) Molecular changes of acetylcholinesterase and butyrylcholinesterase in Alzheimer patients during the natural course of the disease and treatment with cholinesterase inhibitors-insight into neurochemical mechanisms affecting the progression of the disease. Thesis for doctoral degree (Ph.D.) Stockholm, 120 pGoogle Scholar
  5. Darreh-Shori, T, Almkvist, O, Guan, ZZ, Garlind, A, Strandberg, B, Svensson, AL, Soreq, H, Hellstrom-Lindahl, E, Nordberg, A 2002Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 monthsNeurology59563572PubMedGoogle Scholar
  6. Darreh-Shori, T, Hellstrom-Lindahl, E, Flores-Flores, C, Guan, ZZ, Soreq, H, Nordberg, A 2004Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patientsJ Neurochem8811021113PubMedCrossRefGoogle Scholar
  7. Davidsson, P, Blennow, K, Andreasen, N, Eriksson, B, Minthon, L, Hesse, C 2001Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer’s diseaseNeurosci Lett300157160PubMedCrossRefGoogle Scholar
  8. Ellman, GL, Courtney, KD, Andres, V,Jr, Featherstone, RM 1961A new and rapid colorimetric determination of acetylcholinesterase activityBiochem Pharmacol78895PubMedCrossRefGoogle Scholar
  9. Fambrough, DM, Engel, AG, Rosenberry, TL 1982Acetylcholinesterase of human erythrocytes and neuromuscular junctions: homologies revealed by monoclonal antibodiesProc Natl Acad Sci USA7910781082PubMedCrossRefGoogle Scholar
  10. Folstein, MF, Folstein, SE, McHugh, PR 1975“Mini-mental state”. A practical method for grading the cognitive state of patients for the clinicianJ Psychiatr Res12189198PubMedCrossRefGoogle Scholar
  11. Giacobini, E 2000Cholinesterase inhibitors stabilize Alzheimer diseaseNeurochem Res2511851190PubMedCrossRefGoogle Scholar
  12. Giacobini, E, Zhu, XD, Williams, E, Sherman, KA 1996The effect of the selective reversible acetylcholinesterase inhibitor E2020 on extracellular acetylcholine and biogenic amine levels in rat cortexNeuropharmacology35205211PubMedCrossRefGoogle Scholar
  13. Grisaru, D, Sternfeld, M, Eldor, A, Glick, D, Soreq, H 1999Structural roles of acetylcholinesterase variants in biology and pathologyEur J Biochem264672686PubMedCrossRefGoogle Scholar
  14. Kaasinen, V, Nagren, K, Jarvenpaa, T, Roivainen, A, Yu, M, Oikonen, V, Kurki, T, Rinne, JO 2002Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s diseaseJ Clin Psychopharmacol22615620PubMedCrossRefGoogle Scholar
  15. Kaufer, D, Friedman, A, Seidman, S, Soreq, H 1998Acute stress facilitates long-lasting changes in cholinergic gene expressionNature393373377PubMedCrossRefGoogle Scholar
  16. Kuhl, DE, Minoshima, S, Frey, KA, Foster, NL, Kilbourn, MR, Koeppe, RA 2000Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortexAnn Neurol48391395PubMedCrossRefGoogle Scholar
  17. McKhann, G, Drachman, D, Folstein, M, Katzman, R, Price, D, Stadlan, EM 1984Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s diseaseNeurology34939944PubMedGoogle Scholar
  18. Mesulam, MM, Geula, C, Cosgrove, R, Mash, D, Brimijoin, S 1991Immunocytochemical demonstration of axonal and perikaryal acetylcholinesterase in human cerebral cortexBrain Res539233238PubMedCrossRefGoogle Scholar
  19. Nitsch, RM, Rossner, S, Albrecht, C, Mayhaus, M, Enderich, J, Schliebs, R, Wegner, M, Arendt, T, von der Kammer, H 1998Muscarinic acetylcholine receptors activate the acetylcholinesterase gene promoterJ Physiol Paris92257264PubMedCrossRefGoogle Scholar
  20. Nordberg, A, Hellström-Lindahl, E, Almkvist, O, Meurling, L 1999Activity of acetylcholinesterase in CSF increases in Alzheimer’s patients after treatment with tacrineAlzheimer’s Reports2347352Google Scholar
  21. Nordberg, A, Svensson, AL 1998Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacologyDrug Saf19465480PubMedCrossRefGoogle Scholar
  22. Perrier, AL, Massoulie, J, Krejci, E 2002PRiMA: the membrane anchor of acetylcholinesterase in the brainNeuron33275285PubMedCrossRefGoogle Scholar
  23. Rakonczay, Z, Brimijoin, S 1988Monoclonal antibodies to human brain acetylcholinesterase: properties and applicationsCell Mol Neurobiol88593PubMedCrossRefGoogle Scholar
  24. Rogers, SL, Doody, RS, Mohs, RC, Friedhoff, LT 1998Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study GroupArch Intern Med15810211031PubMedCrossRefGoogle Scholar
  25. Rogers, SL, Friedhoff, LT 1996The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-Blind, placebo-controlled trial. The Donepezil Study GroupDementia7293303PubMedGoogle Scholar
  26. Rogers, SL, Friedhoff, LT 1998Pharmacokinetic and pharmacodynamic profile of donepezil HCl following single oral dosesBr J Clin Pharmacol4616PubMedCrossRefGoogle Scholar
  27. Seltzer, B, Zolnouni, P, Nunez, M, Goldman, R, Kumar, D, Ieni, J, Richardson, S 2004Efficacy of donepezil in early-stage Alzheimer disease: a randomized placebo-controlled trialArch Neurol6118521856PubMedCrossRefGoogle Scholar
  28. Shapira, M, Tur-Kaspa, I, Bosgraaf, L, Livni, N, Grant, AD, Grisaru, D, Korner, M, Ebstein, RP, Soreq, H 2000A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterasesHum Mol Genet912731281PubMedCrossRefGoogle Scholar
  29. Soreq, H, Seidman, S 2001Acetylcholinesterase – new roles for an old actorNat Rev Neurosci2294302PubMedCrossRefGoogle Scholar
  30. Sternfeld, M, Shoham, S, Klein, O, Flores-Flores, C, Evron, T, Idelson, GH, Kitsberg, D, Patrick, JW, Soreq, H 2000Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlatesProc Natl Acad Sci USA9786478652PubMedCrossRefGoogle Scholar
  31. Tiseo, PJ, Rogers, SL, Friedhoff, LT 1998Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administrationBr J Clin Pharmacol461318PubMedCrossRefGoogle Scholar
  32. Weinstock, M, Razin, M, Chorev, M, Enz, A 1994Pharmacological evaluation of phenyl-carbamates as CNS-selective acetylcholinesterase inhibitorsJ Neural Transm43219225Google Scholar
  33. Zahler, R, Sun, W, Ardito, T, Zhang, ZT, Kocsis, JD, Kashgarian, M 1996The alpha3 isoform protein of the Na+, K(+)-ATPase is associated with the sites of cardiac and neuromuscular impulse transmissionCirc Res78870879PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Darreh-Shori
    • 1
  • L. Meurling
    • 3
  • T. Pettersson
    • 3
  • K. Hugosson
    • 1
  • E. Hellström-Lindahl
    • 1
  • N. Andreasen
    • 2
  • L. Minthon
    • 4
  • A. Nordberg
    • 1
    • 2
  1. 1.Division of Molecular Neuropharmacology, Department of Neurobiology, Care Sciences and Society, Karolinska InstituteKarolinska University Hospital HuddingeStockholmSweden
  2. 2.Department of Geriatric MedicineKarolinska University Hospital HuddingeStockholmSweden
  3. 3.Labmedicin, Division for Clinical PharmacologyKarolinska University Hospital HuddingeStockholmSweden
  4. 4.Neuropsychiatric ClinicUniversity Hospital MASMalmöSweden

Personalised recommendations