Journal of Neural Transmission

, Volume 113, Issue 8, pp 1041–1054 | Cite as

Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity

  • F. Tribl
  • K. Marcus
  • G. Bringmann
  • H. E. Meyer
  • M. Gerlach
  • P. Riederer


Proteomics is a promising approach, which provides information about the expression of proteins and increasingly finds application in life science and disease research. Meanwhile, proteomics has proven to be applicable even on post mortem human brain tissue and has opened a new area in neuroproteomics. Thereby, neuroproteomics is usually employed to generate large protein profiles of brain tissue, which mostly reflect the expression of highly abundant proteins. As a complementary approach, the focus on sub-proteomes would enhance more specific insight into brain function. Sub-proteomes are accessible via several strategies, including affinity pull-down approaches, immunoprecipitation or subcellular fractionation. The extraordinary potential of subcellular proteomics to reveal even minute differences in the protein constitution of related cellular organelles is exemplified by a recent global description of neuromelanin granules from the human brain, which could be identified as pigmented lysosome-related organelles.

Keywords: Proteomics, human brain, neuromelanin, mass spectrometry, sub-proteomes, lysosome-related, subcellular. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, R, Goodlett, DR 2001Mass spectrometry in proteomicsChem Rev101269295PubMedGoogle Scholar
  2. Aebersold, R, Mann, M 2003Mass spectrometry-based proteomicsNature422198207PubMedGoogle Scholar
  3. Bagshaw, RD, Mahuran, DJ, Callahan, JW 2005A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelleMol Cell Proteomics4133143PubMedGoogle Scholar
  4. Basrur, V, Yang, F, Kushimoto, T, Higashimoto, Y, Yasumoto, K, Valencia, J, Muller, J, Vieira, WD, Watabe, H, Shabanowitz, J, Hearing, VJ, Hunt, DF, Appella, E 2003Proteomic analysis of early melanosomes: identification of novel melanosomal proteinsJ Proteome Res26979PubMedGoogle Scholar
  5. Basso, M, Giraudo, S, Corpillo, D, Bergamasco, B, Lopiano, L, Fasano, M 2004Proteome analysis of human substantia nigra in Parkinson’s diseaseProteomics439433952PubMedGoogle Scholar
  6. Ben-Shachar, D, Riederer, P, Youdim, MB 1991Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s diseaseJ Neurochem5716091614PubMedGoogle Scholar
  7. Berman, SB, Hastings, TG 1999Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s diseaseJ Neurochem7311271137PubMedGoogle Scholar
  8. Binz, PA, Hochstrasser, DF, Appel, RD 2003Mass spectrometry-based proteomics: current status and potential use in clinical chemistryClin Chem Lab Med4115401551PubMedGoogle Scholar
  9. Björklund, A, Lindvall, O 1984Dopamine-containing systems in the CNS. Handbook of chemical neuroanatomyBjörklund, AHökfelt, T eds. Classical Transmitters in the CNS, Part IElsevier Science PublishersAmsterdam55122Google Scholar
  10. Braak, H, Braak, E 1986Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adultHum Neurobiol57182PubMedGoogle Scholar
  11. Buesa, C, Maes, T, Subirada, F, Barrachina, M, Ferrer, I 2004DNA chip technology in brain banks: confronting a degrading worldJ Neuropathol Exp Neurol6310031014PubMedGoogle Scholar
  12. Butterfield, DA, Castegna, A 2003Proteomic analysis of oxidatively modified proteins in Alzheimer’s disease brain: insights into neurodegenerationCell Mol Biol (Noisy-le-grand)49747751Google Scholar
  13. Castegna, A, Thongboonkerd, V, Klein, JB, Lynn, B, Markesbery, WR, Butterfield, DA 2003Proteomic identification of nitrated proteins in Alzheimer’s disease brainJ Neurochem8513941401PubMedGoogle Scholar
  14. Chambers, G, Lawrie, L, Cash, P, Murray, GI 2000Proteomics: a new approach to the study of diseaseJ Pathol192280288PubMedGoogle Scholar
  15. Choudhary, J, Grant, SG 2004Proteomics in postgenomic neuroscience: the end of the beginningNat Neurosci7440445PubMedGoogle Scholar
  16. Coughenour, HD, Spaulding, RS, Thompson, CM 2004The synaptic vesicle proteome: a comparative study in membrane protein identificationProteomics431413155PubMedGoogle Scholar
  17. D’Ambrosio, C, Arena, S, Fulcoli, G, Scheinfeld, MH, Zhou, D, D’Adamio, L, Scaloni, A 2006Hyperphosphorylation of JNK-interacting protein 1, a protein associated with Alzheimer diseaseMol Cell Proteomics597113PubMedGoogle Scholar
  18. Davidsson, P, Brinkmalm, A, Karlsson, G, Persson, R, Lindbjer, M, Puchades, M, Folkesson, S, Paulson, L, Dahl, A, Rymo, L, Silberring, J, Ekman, R, Blennow, K 2003Clinical mass spectrometry in neuroscience. Proteomics and peptidomicsCell Mol Biol (Noisy-le-grand)49681688Google Scholar
  19. Dexter, DT, Wells, FR, Agid, F, Agid, Y, Lees, AJ, Jenner, P, Marsden, CD 1987Increased nigral iron content in postmortem parkinsonian brainLancet212191220PubMedGoogle Scholar
  20. Dodd, PR, Hambley, JW, Cowburn, RF, Hardy, JA 1988A comparison of methodologies for the study of functional transmitter neurochemistry in human brainJ Neurochem5013331345PubMedGoogle Scholar
  21. Edgar, PF, Douglas, JE, Cooper, GJ, Dean, B, Kydd, R, Faull, RL 2000Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophreniaMol Psychiatry58590PubMedGoogle Scholar
  22. Edgar, PF, Douglas, JE, Knight, C, Cooper, GJ, Faull, RL, Kydd, R 1999aProteome map of the human hippocampusHippocampus9644650Google Scholar
  23. Edgar, PF, Schonberger, SJ, Dean, B, Faull, RL, Kydd, R, Cooper, GJ 1999bA comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer’s disease individualsMol Psychiatry4173178Google Scholar
  24. Farr, CD, Gafken, PR, Norbeck, AD, Doneanu, CE, Stapels, MD, Barofsky, DF, Minami, M, Saugstad, JA 2004Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituentsJ Neurochem91438450PubMedGoogle Scholar
  25. Fedorow H, Halliday GM, Rickert CH, Gerlach M, Riederer P, Double KL (2005a) Evidence for specific phases in the development of human neuromelanin. Neurobiol AgingGoogle Scholar
  26. Fedorow, H, Tribl, F, Halliday, G, Gerlach, M, Riederer, P, Double, KL 2005bNeuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s diseaseProg Neurobiol75109124Google Scholar
  27. Fountoulakis, M 2004Application of proteomics technologies in the investigation of the brainMass Spectrom Rev23231258PubMedGoogle Scholar
  28. Fountoulakis, M, Cairns, N, Lubec, G 1999Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer’s disease and Down syndromeJ Neural Transm [Suppl]57323335Google Scholar
  29. Fountoulakis, M, Hardmeier, R, Hoger, H, Lubec, G 2001Postmortem changes in the level of brain proteinsExp Neurol1678694PubMedGoogle Scholar
  30. Garin, J, Diez, R, Kieffer, S, Dermine, JF, Duclos, S, Gagnon, E, Sadoul, R, Rondeau, C, Desjardins, M 2001The phagosome proteome: insight into phagosome functionsJ Cell Biol152165180PubMedGoogle Scholar
  31. Gerlach, M, Riederer, P 1996Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in manJ Neural Transm1039871041PubMedGoogle Scholar
  32. Gomez-Santos, C, Ferrer, I, Santidrian, AF, Barrachina, M, Gil, J, Ambrosio, S 2003Dopamine induces autophagic cell death and alpha-synuclein in crease in human neuroblastoma SH-SY5Y cellsJ Neurosci Res73341350PubMedGoogle Scholar
  33. Grimm, J, Mueller, A, Hefti, F, Rosenthal, A 2004Molecular basis for catecholaminergic neuron diversityProc Natl Acad Sci USA1011389113896PubMedGoogle Scholar
  34. Grünblatt, E 2004The benefits of microarrays as tools for studying neuropsychiatric disordersDrugs Today (Barc)40147156Google Scholar
  35. Grünblatt, E, Mandel, S, Jacob-Hirsch, J, Zeligson, S, Amariglo, N, Rechavi, G, Li, J, Ravid, R, Roggendorf, W, Riederer, P, Youdim, MB 2004Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genesJ Neural Transm11115431573PubMedGoogle Scholar
  36. Gygi, SP, Rist, B, Gerber, SA, Turecek, F, Gelb, MH, Aebersold, R 1999aQuantitative analysis of complex protein mixtures using isotope-coded affinity tagsNat Biotechnol17994999Google Scholar
  37. Gygi, SP, Rochon, Y, Franza, BR, Aebersold, R 1999bCorrelation between protein and mRNA abundance in yeastMol Cell Biol1917201730Google Scholar
  38. Herbert, B 1999Advances in protein solubilisation for two-dimensional electrophoresisElectrophoresis20660663PubMedGoogle Scholar
  39. Hirsch, E, Graybiel, AM, Agid, YA 1988Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s diseaseNature334345348PubMedGoogle Scholar
  40. Huber, LA, Pfaller, K, Vietor, I 2003Organelle proteomics: implications for subcellular fractionation in proteomicsCirc Res92962968PubMedGoogle Scholar
  41. Hynd, MR, Lewohl, JM, Scott, HL, Dodd, PR 2003Biochemical and molecular studies using human autopsy brain tissueJ Neurochem85543562PubMedCrossRefGoogle Scholar
  42. Jellinger, K, Kienzl, E, Rumpelmair, G, Riederer, P, Stachelberger, H, Ben-Shachar, D, Youdim, MB 1992Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysisJ Neurochem5911681171PubMedGoogle Scholar
  43. Jimenez, CR, Stam, FJ, Li, KW, Gouwenberg, Y, Hornshaw, MP, De Winter, F, Verhaagen, J, Smit, AB 2005Proteomics of the injured rat sciatic nerve reveals protein expression dynamics during regenerationMol Cell Proteomics4120132PubMedGoogle Scholar
  44. Johnston-Wilson, NL, Sims, CD, Hofmann, JP, Anderson, L, Shore, AD, Torrey, EF, Yolken, RH 2000Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology ConsortiumMol Psychiatry5142149PubMedGoogle Scholar
  45. Jordan, BA, Fernholz, BD, Boussac, M, Xu, C, Grigorean, G, Ziff, EB, Neubert, TA 2004Identification and verification of novel rodent postsynaptic density proteinsMol Cell Proteomics3857871PubMedGoogle Scholar
  46. Jung, E, Heller, M, Sanchez, JC, Hochstrasser, DF 2000Proteomics meets cell biology: the establishment of subcellular proteomesElectrophoresis2133693377PubMedGoogle Scholar
  47. Kaindl AM, Sifringer M, Zabel C, Nebrich G, Wacker MA, Felderhoff-Mueser U, Endesfelder S, von der Hagen M, Stefovska V, Klose J, Ikonomidou C (2005) Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ. [Epub ahead of print]Google Scholar
  48. Kanninen, K, Goldsteins, G, Auriola, S, Alafuzoff, I, Koistinaho, J 2004Glycosylation changes in Alzheimer’s disease as revealed by a proteomic approachNeurosci Lett367235240PubMedGoogle Scholar
  49. Kastner, A, Hirsch, EC, Lejeune, O, Javoy-Agid, F, Rascol, O, Agid, Y 1992Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content?J Neurochem5910801089PubMedGoogle Scholar
  50. Kellner R, Lottspeich F, Meyer HE (1999) Microcharacterization of Proteins, Wiley-VCHGoogle Scholar
  51. Klose, J 1975Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammalsHumangenetik26231243PubMedGoogle Scholar
  52. Klose, J 1999aFractionated extraction of total tissue proteins from mouse and human for 2-D electrophoresisMethods Mol Biol1126785Google Scholar
  53. Klose, J 1999bLarge-gel 2-D electrophoresisMethods Mol Biol112147172Google Scholar
  54. Klose, J, Nock, C, Herrmann, M, Stuhler, K, Marcus, K, Bluggel, M, Krause, E, Schalkwyk, LC, Rastan, S, Brown, SD, Bussow, K, Himmelbauer, H, Lehrach, H 2002Genetic analysis of the mouse brain proteomeNat Genet30385393PubMedGoogle Scholar
  55. Korolainen, MA, Goldsteins, G, Alafuzoff, I, Koistinaho, J, Pirttila, T 2002Proteomic analysis of protein oxidation in Alzheimer’s disease brainElectrophoresis2334283433PubMedGoogle Scholar
  56. Krapfenbauer, K, Engidawork, E, Cairns, N, Fountoulakis, M, Lubec, G 2003Aberrant expression of peroxiredoxin subtypes in neurodegenerative disordersBrain Res967152160PubMedGoogle Scholar
  57. Langen, H, Berndt, P, Roder, D, Cairns, N, Lubec, G, Fountoulakis, M 1999Two-dimensional map of human brain proteinsElectrophoresis20907916PubMedGoogle Scholar
  58. Larsen, MR, Roepstorff, P 2000Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysisFresenius J Anal Chem366677690PubMedGoogle Scholar
  59. Li, KW, Hornshaw, MP, van Minnen, J, Smalla, KH, Gundelfinger, ED, Smit, AB 2005Organelle Proteomics of Rat Synaptic Proteins: Correlation-Profiling by Isotope-Coded Affinity Tagging in Conjunction with Liquid Chromatography-Tandem Mass Spectrometry to Reveal Post-synaptic Density Specific ProteinsJ Proteome Res4725733PubMedGoogle Scholar
  60. Lominadze, G, Powell, DW, Luerman, GC, Link, AJ, Ward, RA, McLeish, KR 2005Proteomic Analysis of Human Neutrophil GranulesMol Cell Proteomics415031521PubMedGoogle Scholar
  61. Lottspeich, F 1999Proteome analysis: a pathway to the functional analysis of proteinsAngew Chem Int Ed Engl3824762492PubMedGoogle Scholar
  62. Lüking, A, Cahill, DJ, Mullner, S 2005Protein biochips: a new and versatile platform technology for molecular medicineDrug Discov Today10789794Google Scholar
  63. Mann, DM, Yates, PO 1983Possible role of neuromelanin in the pathogenesis of Parkinson’s diseaseMech Ageing Dev21193203PubMedGoogle Scholar
  64. Marcotte, ER, Pearson, DM, Srivastava, LK 2001Animal models of schizophrenia: a critical reviewJ Psychiatry Neurosci26395410PubMedGoogle Scholar
  65. Marcotte, ER, Srivastava, LK, Quirion, R 2003cDNA microarray and proteomic approaches in the study of brain diseases: focus on schizophrenia and Alzheimer’s diseasePharmacol Ther1006374PubMedGoogle Scholar
  66. Marcus, K, Schmidt, O, Schäfer, H, Hamacher, M, Van Hall, A, Meyer, HE 2004Proteomics-application to the brainInt Rev Neurobiol61285311PubMedGoogle Scholar
  67. Marsden, CD 1961Pigmentation in the nucleus substantiae nigrae of mammalsJ Anat95256261PubMedGoogle Scholar
  68. Marsden, CD 1983Neuromelanin and Parkinson’s diseaseJ Neural Transm [Suppl]19121141Google Scholar
  69. McRitchie, DA, Halliday, GM, Cartwright, H 1995Quantitative analysis of the variability of substantia nigra pigmented cell clusters in the humanNeuroscience68539551PubMedGoogle Scholar
  70. Meyer, HE, Hoffmann-Posorske, E, Korte, H, Heilmeyer, LM,Jr 1986Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivityFEBS Lett2046166PubMedGoogle Scholar
  71. Mimmack, ML, Brooking, J, Bahn, S 2004Quantitative polymerase chain reaction: validation of microarray results from postmortem brain studiesBiol Psychiatry55337345PubMedGoogle Scholar
  72. Mizuno, Y, Ohta, S, Tanaka, M, Takamiya, S, Suzuki, K, Sato, T, Oya, H, Ozawa, T, Kagawa, Y 1989Deficiencies in complex I subunits of the respiratory chain in Parkinson’s diseaseBiochem Biophys Res Commun16314501455PubMedGoogle Scholar
  73. Mouledous, L, Hunt, S, Harcourt, R, Harry, J, Williams, KL, Gutstein, HB 2003aNavigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samplesProteomics3610615Google Scholar
  74. Mouledous, L, Hunt, S, Harcourt, R, Harry, JL, Williams, KL, Gutstein, HB 2003bProteomic analysis of immunostained, laser-capture microdissected brain samplesElectrophoresis24296302Google Scholar
  75. O’Farrell, PH 1975High resolution two-dimensional electrophoresis of proteinsJ Biol Chem25040074021PubMedGoogle Scholar
  76. Ong, S-E, Mann, M 2005Mass spectrometry-based proteomics turns quantitativeNature Chem Biol1252262Google Scholar
  77. Owens, SR, Breithaupt, H 2002From genomes to cures–a long way to go. More than a year after the publication of the first draft of the human genome, scientists took stock of its implications for science and societyEMBO Rep31114PubMedGoogle Scholar
  78. Palacino, JJ, Sagi, D, Goldberg, MS, Krauss, S, Motz, C, Wacker, M, Klose, J, Shen, J 2004Mitochondrial dysfunction and oxidative damage in parkin-deficient miceJ Biol Chem2791861418622PubMedGoogle Scholar
  79. Paulson, L, Persson, R, Karlsson, G, Silberring, J, Bierczynska-Krzysik, A, Ekman, R, Westman-Brinkmalm, A 2005Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratoryJ Mass Spectrom40202213PubMedGoogle Scholar
  80. Perlson, E, Medzihradszky, KF, Darula, Z, Munno, DW, Syed, NI, Burlingame, AL, Fainzilber, M 2004Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injuryMol Cell Proteomics3510520PubMedGoogle Scholar
  81. Preuss, TM, Caceres, M, Oldham, MC, Geschwind, DH 2004Human brain evolution: insights from microarraysNat Rev Genet5850860PubMedGoogle Scholar
  82. Reichmann H, Riederer P (1989) Biochemical analyses of respiratory chain enzymes in different brain regions of patients with Parkinson’s disease. BMBF Symposium “Morbus Parkinson und andere Basalganglienerkrankungen”, Bad Kissingen, Abstract 1989, S44Google Scholar
  83. Riederer, P, Rausch, WD, Schmidt, B, Kruzik, P, Konradi, C, Sofic, E, Danielczyk, W, Fischer, M, Ogris, E 1988Biochemical fundamentals of Parkinson’s diseaseMt Sinai J Med552128PubMedGoogle Scholar
  84. Riederer, P, Sofic, E, Rausch, WD, Kruzik, P, Youdim, MBH 1985Dopaminforschung heute und morgen – L-Dopa in der ZukunftUmek, H eds. L-Dopa-Substitution der Parkinson-Krankheit: Geschichte – Gegenwart – ZukunftSpringerWien New York127144Google Scholar
  85. Ryan, MM, Huffaker, SJ, Webster, MJ, Wayland, M, Freeman, T, Bahn, S 2004Application and optimization of microarray technologies for human postmortem brain studiesBiol Psychiatry55329336PubMedGoogle Scholar
  86. Santoni, V, Molloy, M, Rabilloud, T 2000Membrane proteins and proteomics: un amour impossible?Electrophoresis2110541070PubMedGoogle Scholar
  87. Schapira, AH, Cooper, JM, Dexter, D, Jenner, P, Clark, JB, Marsden, CD 1989Mitochondrial complex I deficiency in Parkinson’s diseaseLancet11269PubMedGoogle Scholar
  88. Schilling, B, Bharath, MMS, Row, RH, Murray, J, Cusack, MP, Capaldi, RA, Freed, CR, Prasad, KN, Andersen, JK, Gibson, BW 2005Rapid purification and mass spectrometric characterization of mitochondrial NADH dehydrogenase (Complex I) from rodent brain and a dopaminergic neuronal cell lineMol Cell Proteomics48496PubMedGoogle Scholar
  89. Schonberger, SJ, Edgar, PF, Kydd, R, Faull, RL, Cooper, GJ 2001Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease processProteomics115191528PubMedGoogle Scholar
  90. Shamoto-Nagai, M, Maruyama, W, Akao, Y, Osawa, T, Tribl, F, Gerlach, M, Zucca, FA, Zecca, L, Riederer, P, Naoi, M 2004Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cellsJ Neural Transm11112531265PubMedGoogle Scholar
  91. Sitek, B, Luttges, J, Marcus, K, Kloppel, G, Schmiegel, W, Meyer, HE, Hahn, SA, Stuhler, K 2005Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinomaProteomics526652679PubMedGoogle Scholar
  92. Smythies, J 1996On the functional of neuromelaninProc R Soc Lond B Biol Sci263487489Google Scholar
  93. Standaert, DG 2005Applications of laser capture microdissection in the study of neurodegenerative diseaseArch Neurol62203205PubMedGoogle Scholar
  94. Sulzer, D, Bogulavsky, J, Larsen, KE, Behr, G, Karatekin, E, Kleinman, MH, Turro, N, Krantz, D, Edwards, RH, Greene, LA, Zecca, L 2000Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesiclesProc Natl Acad Sci USA971186911874PubMedGoogle Scholar
  95. Taylor, SW, Fahy, E, Ghosh, SS 2003Global organellar proteomicsTrends Biotechnol218288PubMedGoogle Scholar
  96. Tribl, F, Gerlach, M, Marcus, K, Asan, E, Tatschner, T, Arzberger, T, Meyer, HE, Bringmann, G, Riederer, P 2005“Subcellular Proteomics” of Neuromelanin Granules Isolated from the Human BrainMol Cell Proteomics4945957PubMedGoogle Scholar
  97. Trinidad, JC, Thalhammer, A, Specht, CG, Schoepfer, R, Burlingame, AL 2005Phosphorylation state of postsynaptic density proteinsJ Neurochem9213061316PubMedGoogle Scholar
  98. Unlu, M, Morgan, ME, Minden, JS 1997Difference gel electrophoresis: a single gel method for detecting changes in protein extractsElectrophoresis1820712077PubMedGoogle Scholar
  99. Van Deerlin VMD, Ginsberg SD, Lee VM-Y, Trojanowski JQ (2002) The use of fixed human post mortem brain tissue tu study mRNA expression in neurodegenerative diseases: application of microdissection and mRNA amplification. Microarrays for the neurosciences: an essential guide. Gregg JP (ed) Cambridge, Massachusetts, MIT press: 201–235Google Scholar
  100. Voshol, H, Glucksman, MJ, van Oostrum, J 2003Proteomics in the discovery of new therapeutic targets for psychiatric diseaseCurr Mol Med3447458PubMedGoogle Scholar
  101. Whittaker, VP, Sheridan, MN 1965The morphology and acetylcholine content of isolated cerebral cortical synaptic vesiclesJ Neurochem12363372PubMedGoogle Scholar
  102. Wolters, DA, Washburn, MP, Yates, JR,3rd 2001An automated multidimensional protein identification technology for shotgun proteomicsAnal Chem7356835690PubMedGoogle Scholar
  103. Wu, CC, Yates, JR,3rd 2003The application of mass spectrometry to membrane proteomicsNat Biotechnol21262267PubMedGoogle Scholar
  104. Yu, LR, Conrads, TP, Uo, T, Kinoshita, Y, Morrison, RS, Lucas, DA, Chan, KC, Blonder, J, Issaq, HJ, Veenstra, TD 2004Global analysis of the cortical neuron proteomeMol Cell Proteomics3896907PubMedGoogle Scholar
  105. Yuan, X, Desiderio, DM 2005Proteomics analysis of human cerebrospinal fluidJ Chromatogr B Analyt Technol Biomed Life Sci815179189PubMedGoogle Scholar
  106. Zabel, C, Chamrad, DC, Priller, J, Woodman, B, Meyer, HE, Bates, GP, Klose, J 2002Alterations in the mouse and human proteome caused by Huntington’s diseaseMol Cell Proteomics1366375PubMedGoogle Scholar
  107. Zabel, C, Klose, J 2004Influence of Huntington’s disease on the human and mouse proteomeInt Rev Neurobiol61241283PubMedCrossRefGoogle Scholar
  108. Zhou, Y, Gu, G, Goodlett, DR, Zhang, T, Pan, C, Montine, TJ, Montine, KS, Aebersold, RH, Zhang, J 2004Analysis of alpha-synuclein-associated proteins by quantitative proteomicsJ Biol Chem2793915539164PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • F. Tribl
    • 1
    • 3
    • 5
  • K. Marcus
    • 2
  • G. Bringmann
    • 3
  • H. E. Meyer
    • 2
  • M. Gerlach
    • 4
  • P. Riederer
    • 1
    • 5
  1. 1.The National Parkinson Foundation (NPF) Research LaboratoriesMiamiUSA
  2. 2.Medizinisches Proteom-CenterRuhr-Universität BochumBochumGermany
  3. 3.Institute of Organic ChemistryBayerische Julius-Maximilians-Universität WürzburgWürzburgGermany
  4. 4.Clinical Neurochemistry, Clinic and Polyclinic for Child & Adolescent Psychiatry & PsychotherapyBayerische Julius-Maximilians-Universität WürzburgWürzburgGermany
  5. 5.Department of Clinical Neurochemistry, Clinic and Polyclinic for Psychiatry & PsychotherapyBayerische Julius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations