Journal of Neural Transmission

, Volume 113, Issue 12, pp 1927–1934 | Cite as

Methylphenidate exerts no neurotoxic, but neuroprotective effects in vitro

  • A. G. Ludolph
  • U. Schaz
  • A. Storch
  • S. Liebau
  • J. M. Fegert
  • T. M. Boeckers
Article

Summary.

Methylphenidate (MPH) is the most common used drug in child and adolescent psychiatry. Despite of this fact, however, little is known about its exact pharmacological mechanisms.

Here we investigated the toxic effects of MPH in vitro in human embryonic kidney (HEK-293) cells stably expressing the human dopamine transporter (HEK-hDAT cells) and in cultured rat embryonic (E14.5) mesencephalic cultures. MPH alone (up to 1 mM) affected neither the growth of HEK-hDAT cells nor the survival of dopaminergic (DA) neurons in primary cultures after treatment up to 72 h. No differences in neuronal arborisation or in the density of synapses were detected. 1-methyl-4-phenylpyridinium (MPP+) showed no toxic effect in HEK-293 cells, but had significant toxic effects in HEK-hDAT cells and DA neurons. MPH (1 µM – 1 mM) dose-dependently reduced this cytotoxicity in HEK-hDAT cells and primary mesencephalic DA neurons.

The presented results show that application of MPH alone does not have any toxic effect on DA cells in vitro. The neurotoxic effects of MPP+ could be significantly reduced by co-application of MPH, an effect that is most likely explained by MPH blocking the DAT.

Keywords: Methylphenidate, toxicity, neuroprotection, MPP+, in vitro study, mesencephalic neurons, dopaminergic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbaresi, WJ, Katusic, SK, Colligan, RC, Pankratz, VS, Weaver, AL, Weber, KJ, Mrazek, DA, Jacobsen, SJ 2002How common is attention-deficit/ hyperactivity disorder? Incidence in a population-based birth cohort in Rochester, MinnArch Pediatr Adolesc Med156217224PubMedGoogle Scholar
  2. Bolanos, CA, Barrot, M, Berton, O, Wallace-Black, D, Nestler, EJ 2003Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthoodBiol Psychiatry5413171329PubMedCrossRefGoogle Scholar
  3. Brandon, CL, Marinelli, M, White, FJ 2003Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neuronsBiol Psychiatry5413381344PubMedCrossRefGoogle Scholar
  4. Carlezon, WA,Jr, Mague, SD, Andersen, SL 2003Enduring behavioural effects of early exposure to methylphenidate in ratsBiol Psychiatry5413301337PubMedCrossRefGoogle Scholar
  5. Dobbing, J, Sands, J 1979The brain growth spurt in various mammalian speciesEarly Hum Dev37984PubMedCrossRefGoogle Scholar
  6. Fleming, SM, Delville, Y, Schallert, T 2005An intermittent, controlled-rate, slow progressive degeneration model of Parkinson’s disease: antiparkinson effects of sinemet and protective effects of methylphenidateBehav Brain Res156201213PubMedCrossRefGoogle Scholar
  7. Gainetdinov, RR, Fumagalli, F, Jones, SR, Caron, MG 1997Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporterJ Neurochem6913221325PubMedCrossRefGoogle Scholar
  8. Gerlach, M, Riederer, P, Przuntek, H, Youdim, MBH 1991MPTP mechanisms of neurotoxicity and their implications for Parkinson’s diseaseEur J Pharmacol208273286PubMedCrossRefGoogle Scholar
  9. Heider I, Lehmensiek V, Lenk T, Mueller T, Storch A (2004) Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures. J Neural Transm [Suppl 68]: 1–13Google Scholar
  10. Husson, I, Mesplès, B, Medja, F, Leroux, P, Kosofsky, B, Gressens, P 2004Methylphenidate and MK-801, an N-Methyl-D-Aspartate receptor antagonist: shared biological propertiesNeuroscience125163170PubMedCrossRefGoogle Scholar
  11. Koutsilieri, E, Chen, TS, Rausch, WD, Riederer, P 1996Selegiline is neuroprotective in primary brain cultures treated with 1-methyl-4-phenylpyridiniumEur J Pharmacol306181186PubMedCrossRefGoogle Scholar
  12. Kratochvil, CJ, Greenhill, LL, March, JS, Burke, WJ, Vaughan, BS 2004The role of stimulants in the treatment of preschool children with attention-deficit hyperactivity disorderCNS Drugs18957966PubMedCrossRefGoogle Scholar
  13. Ling, Z, Pieri, SC, Carvey, PM 1996Comparison of the neurotoxicity of dihydroxyphenyl-alanine stereoisomers in cultured dopamine neuronsClin Neuropharmacol19360365PubMedCrossRefGoogle Scholar
  14. McFadyen-Leussis, MP, Lewis, SP, Bond, TL, Carrey, N, Brown, RE 2004Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in micePharmacol Biochem Behv77491500CrossRefGoogle Scholar
  15. Miller, AR, Lalonde, CE, McGrail, KM 2004Children’s persistence with methylphenidate therapy: a population-based studyCan J Psychiatry49761768PubMedGoogle Scholar
  16. Moll, GH, Hauser, S, Rüther, E, Rothenberger, A, Hüther, G 2001Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transportersJ Child Adolesc Psychopharmacol111524PubMedCrossRefGoogle Scholar
  17. Mosmann, T 1983Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Imunnol Methods655563CrossRefGoogle Scholar
  18. Olney, JW, Chainllie, Y, Wozniak, DF, Jevtovic-Todorovic, V, Ikonomidou, C 2004Do pediatric drugs cause developing neurons to commit suicide?Trends Pharmacol Sci25135139PubMedCrossRefGoogle Scholar
  19. Reneman, L, De Bruin, K, Lavalaye, J, Gunning, WB, Booij, J 2001Addition of a 5-HT receptor agonist to methylphenidate potentiates the reduction of [123I]FP-CIT binding to dopamine transporters in rat frontal cortex and hippocampusSynapse39193200PubMedCrossRefGoogle Scholar
  20. Robison, LM, Skaer, TL, Sclar, DA, Galin, RS 2002Is attention deficit hyperactivity disorder increasing among girls in the US? Trends in diagnosis and the prescribing of stimulantsCNS Drugs1612911337CrossRefGoogle Scholar
  21. Schenk, JO 2002The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidateProg Drug Res59111131PubMedGoogle Scholar
  22. Storch, A, Burkhardt, K, Ludolph, AC, Schwarz, J 2000Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolismJ Neurochem7522592269PubMedCrossRefGoogle Scholar
  23. Storch, A, Ludolph, AC, Schwarz, J 1999HEK-293 cells expressing the human dopamine transproter are susceptible to low concentrations of 1-methyl-4-phenylpyridine (MPP+) via impairment of energy metabolismNeurochem Int35393403PubMedCrossRefGoogle Scholar
  24. Storch, A, Ludolph, AC, Schwarz, J 2004Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degenerationJ Neural Transm11112671286PubMedCrossRefGoogle Scholar
  25. Storch, A, Ott, S, Hwang, Y, Ortmann, R, Hein, A, Frenzel, S, Matsubara, K, Ohta, S, Wolf, HW, Schwarz, J 2002Selective dopaminergic neurotoxicity of isoquinoline derivatives related to Parkinson’s disease: studies using heterologous expression systems of the dopamine transporterBiochem Pharmacol63909920PubMedCrossRefGoogle Scholar
  26. Teo, SK, Stirling, DI, Thomas, SD, Hoberman, AM, Christian, MS, Khetani, VD 2002The perinatal and postnatal toxicity of D-methylphenidate and D,L-methylphenidate in ratsReprod Toxicol16353366PubMedCrossRefGoogle Scholar
  27. tom Dieck, S, Sanmartí, L, Langnease, K, Richter, K, Kindler, S, Soyke, A, Wex, H, Smalla, K-H, Kämpf, U, Fränzer, J-T, Stumm, M, Garner, CC, Gundelfinger, ED 1998Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectivity localized at the active zone of presynaptoc nerve terminalsJ Cell Biol142499509PubMedCrossRefGoogle Scholar
  28. Trinh, JV, Nehrenberg, DL, Jacobsen, JP, Caron, MG, Wetsel, WC 2003Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type miceNeuroscience118297310PubMedCrossRefGoogle Scholar
  29. Vles, JS, Feron, FJ, Hendriksen, JG, Jolles, J, van Kroonenburgh, MJ, Weber, WE 2003Methylphenidate down-regulates the dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder (ADHD)Neuropediatrics347780PubMedCrossRefGoogle Scholar
  30. Volkow, ND, Fowler, JS, Wang, G, Ding, Y, Gatley, SJ 2002Mechanism of action of methylphenidate: insights from PET imaging studiesJ Atten Disord6S31S43PubMedGoogle Scholar
  31. Yuan, J, McCann, U, Ricaurte, G 1997Methylphenidate and brain dopamine neurotoxicityBrain Res767172175PubMedCrossRefGoogle Scholar
  32. Zito, JM, Safer, DJ, dosReis, S, Gardner, JF, Boles, M, Lynch, F 2000Trends in the prescribing of psychotropic medications to preschoolersJAMA28310251030PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. G. Ludolph
    • 1
  • U. Schaz
    • 2
  • A. Storch
    • 3
  • S. Liebau
    • 2
  • J. M. Fegert
    • 1
  • T. M. Boeckers
    • 2
  1. 1.Department of Child and Adolescent PsychiatryUniversity of UlmUlmGermany
  2. 2.Department of Anatomy and Cell BiologyUniversity of UlmUlmGermany
  3. 3.Department of NeurologyUniversity of DresdenDresdenGermany

Personalised recommendations