Journal of Neural Transmission

, Volume 113, Issue 11, pp 1763–1769

Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease

  • H. Kessler
  • F.-G. Pajonk
  • P. Meisser
  • T. Schneider-Axmann
  • K.-H. Hoffmann
  • T. Supprian
  • W. Herrmann
  • R. Obeid
  • G. Multhaup
  • P. Falkai
  • T. A. Bayer
Article

Summary.

Increasing evidence links Alzheimer’s disease (AD) with misbalanced Cu homeostasis. Recently, we have shown that dietary Cu supplementation in a transgenic mouse model for AD increases bioavailable brain Cu levels, restores Cu, Zn-super oxide-1 activity, prevents premature death, and lowers Aβ levels. In the present report we investigated AD patients with normal levels of Aβ42, Tau and Phospho-Tau in the cerebrospinal fluid (CSF) in comparison with AD patients exhibiting aberrant levels in these CSF biomarkers. The influence of these cerebrospinal fluid (CSF) diagnostic markers with primary dependent variables blood Cu, Zn and ceruloplasmin (CB) and secondary with CSF profiles of Cu, Zn and neurotransmitters was determined. Multivariate tests revealed a significant effect of factor diagnostic group (no AD diagnosis in CSF or AD diagnosis in CSF) for variables plasma Cu and CB (F = 4.80; df = 2, 23; p = 0.018). Subsequent univariate tests revealed significantly reduced plasma Cu (−12.7%; F = 7.05; df = 1, 25; p = 0.014) and CB (−14.1%; F = 9.44; df = 1, 24; p = 0.005) levels in patients with aberrant CSF biomarker concentrations. Although only AD patients were included, the reduced plasma Cu and CB levels in patients with a CSF diagnosis of advanced AD supports previous observations that a mild Cu deficiency might contribute to AD progression.

Keywords: CSF, copper, Alzheimer’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, N, Sjogren, M, Blennow, K 2003CSF markers for Alzheimer’s disease: total tau, phospho-tau and Abeta42World J Biol Psychiatry4147155PubMedCrossRefGoogle Scholar
  2. Angeletti, B, Waldron, KJ, Freeman, KB, Bawagan, H, Hussain, I, Miller, CC, Lau, KF, Tennant, ME, Dennison, C, Robinson, NJ, Dingwall, C 2005BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copperJ Biol Chem2801793017937PubMedCrossRefGoogle Scholar
  3. Atwood, CS, Scarpa, RC, Huang, X, Moir, RD, Jones, WD, Fairlie, DP, Tanzi, RE, Bush, AI 2000Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42J Neurochem7512191233PubMedCrossRefGoogle Scholar
  4. Barnham, KJ, McKinstry, WJ, Multhaup, G, Galatis, D, Morton, CJ, Curtain, CC, Williamson, NA, White, AR, Hinds, MG, Norton, RS, Beyreuther, K, Masters, CL, Parker, MW, Cappai, R 2003Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasisJ Biol Chem2781740117407PubMedCrossRefGoogle Scholar
  5. Bartnikas, TB, Gitlin, JD 2003Mechanisms of biosynthesis of mammalian copper/zinc superoxide dismutaseJ Biol Chem2783360233608PubMedCrossRefGoogle Scholar
  6. Bayer, TA, Cappai, R, Masters, CL, Beyreuther, K, Multhaup, G 1999It all sticks together-the APP-related family of proteins and Alzheimer’s diseaseMol Psychiatry4524528PubMedCrossRefGoogle Scholar
  7. Bayer, TA, Schäfer, S, Simons, A, Kemmling, A, Kamer, T, Tepest, R, Eckert, A, Schüssel, K, Eikenberg, O, Sturchler-Pierrat, C, Abramowski, D, Staufenbiel, M, Multhaup, G 2003Dietary Cu stabilizes brain SOD-1 activity and reduces amyoid Aβ production in APP23 transgenic micePNAS1001418714192PubMedCrossRefGoogle Scholar
  8. Beal, MF, Growdon, JH 1986CSF neurotransmitter markers in Alzheimer’s diseaseProg Neuropsychopharmacol Biol Psychiatry10259270PubMedCrossRefGoogle Scholar
  9. Borchardt, T, Camakaris, J, Cappai, R, Masters, CL, Beyreuther, K, Multhaup, G 1999Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretionBiochem J344461467PubMedCrossRefGoogle Scholar
  10. Bush, AI 2003The metallobiology of Alzheimer’s diseaseTrends Neurosci26207214PubMedCrossRefGoogle Scholar
  11. Cherny, RA, Atwood, CS, Xilinas, ME, Gray, DN, Jones, WD, McLean, CA, Barnham, KJ, Volitakis, I, Fraser, FW, Kim, Y, Huang, X, Goldstein, LE, Moir, RD, Lim, JT, Beyreuther, K, Zheng, H, Tanzi, RE, Masters, CL, Bush, AI 2001Treatment with a copper–zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease Transgenic MiceNeuron30665676PubMedCrossRefGoogle Scholar
  12. Connor, JR, Tucker, P, Johnson, M, Snyder, B 1993Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s diseaseNeurosci Lett1598890PubMedCrossRefGoogle Scholar
  13. Deibel, MA, Ehmann, WD, Markesbery, WR 1996Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stressJ Neurol Sci143137142PubMedCrossRefGoogle Scholar
  14. Gonzalez, C, Martin, T, Cacho, J, Brenas, MT, Arroyo, T, Garcia-Berrocal, B, Navajo, JA, Gonzalez-Buitrago, JM 1999Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein E allele carriersEur J Clin Invest29637642PubMedCrossRefGoogle Scholar
  15. Gottfries, CG, Frederiksen, SO, Heilig, M 1995Neuropeptides and Alzheimer’s diseaseEur Neuropsychopharmacol5491500PubMedCrossRefGoogle Scholar
  16. Hampel, H, Teipel, SJ, Fuchsberger, T, Andreasen, N, Wiltfang, J, Otto, M, Shen, Y, Dodel, R, Du, Y, Farlow, M, Moller, HJ, Blennow, K, Buerger, K 2004Value of CSF beta-amyloid1-42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairmentMol Psychiatry9705710PubMedGoogle Scholar
  17. Hesse, L, Beher, D, Masters, CL, Multhaup, G 1994The beta A4 amyloid precursor protein binding to copperFebs Lett349109116PubMedCrossRefGoogle Scholar
  18. Hulstaert, F, Blennow, K, Ivanoiu, A, Schoonderwaldt, HC, Riemenschneider, M, De Deyn, PP, Bancher, C, Cras, P, Wiltfang, J, Mehta, PD, Iqbal, K, Pottel, H, Vanmechelen, E, Vanderstichele, H 1999Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSFNeurology5215551562PubMedGoogle Scholar
  19. Jeandel, C, Nicolas, MB, Dubois, F, Nabet-Belleville, F, Penin, F, Cuny, G 1989Lipid peroxidation and free radical scavengers in Alzheimer’s diseaseGerontology35275282PubMedCrossRefGoogle Scholar
  20. Lewczuk, P, Esselmann, H, Otto, M, Maler, JM, Henkel, AW, Henkel, MK, Eikenberg, O, Antz, C, Krause, WR, Reulbach, U, Kornhuber, J, Wiltfang, J 2004Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tauNeurobiol Aging25273281PubMedCrossRefGoogle Scholar
  21. Loeffler, DA, LeWitt, PA, Juneau, PL, Sima, AA, Nguyen, HU, DeMaggio, AJ, Brickman, CM, Brewer, GJ, Dick, RD, Troyer, MD, Kanaley, L 1996Increased regional brain concentrations of ceruloplasmin in neurodegenerative disordersBrain Res738265274PubMedCrossRefGoogle Scholar
  22. Lovell, MA, Robertson, JD, Teesdale, WJ, Campbell, JL, Markesbery, WR 1998Copper, iron and zinc in Alzheimer’s disease senile plaquesJ Neurol Sci1584752PubMedCrossRefGoogle Scholar
  23. Maddalena, A, Papassotiropoulos, A, Muller-Tillmanns, B, Jung, HH, Hegi, T, Nitsch, RM, Hock, C 2003Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to beta-amyloid peptide 42Arch Neurol6012021206PubMedCrossRefGoogle Scholar
  24. Maynard, CJ, Cappai, R, Volitakis, I, Cherny, RA, White, AR, Beyreuther, K, Masters, CL, Bush, AI, Li, QX 2002Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and ironJ Biol Chem2774467044676PubMedCrossRefGoogle Scholar
  25. McKhann, G, Drachman, D, Folstein, M, Katzman, R, Price, D, Stadlan, EM 1984Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s DiseaseNeurology34939944PubMedGoogle Scholar
  26. McLoughlin, DM, Standen, CL, Lau, KF, Ackerley, S, Bartnikas, TP, Gitlin, JD, Miller, CC 2001The neuronal adaptor protein X11alpha interacts with the copper chaperone for SOD1 and regulates SOD1 activityJ Biol Chem27693039307PubMedCrossRefGoogle Scholar
  27. Mena, MA, Aguado, EG, de Yebenes, JG 1984Monoamine metabolites in human cerebrospinal fluid. HPLC/ED methodActa Neurol Scand69218225PubMedCrossRefGoogle Scholar
  28. Multhaup, G, Schlicksupp, A, Hesse, L, Beher, D, Ruppert, T, Masters, CL, Beyreuther, K 1996The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I)Science27114061409PubMedGoogle Scholar
  29. Pajonk, F, Kessler, H, Supprian, T, Hamzei, P, Bach, D, Schweickhardt, J, Herrmann, W, Obeid, R, Simons, A, Falkai, P, Multhaup, G, Bayer, T 2005Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer’s diseaseJ Alzheimers Dis82327PubMedGoogle Scholar
  30. Phinney, AL, Drisaldi, B, Lugowski, S, Schmidt, S, Bonek, H, Liang, Y, Home, P, Yang, L, Sekoulidis, J, Coomaraswarmy, J, Cox, D, Mathews, PM, Nixon, RA, Carlson, GA, St George-Hyslop, P, Westaway, D 2003In vivo reduction of amyloid Aβ by a mutant copper transporterPNAS1001419314198PubMedCrossRefGoogle Scholar
  31. Rizzo, V, Anesi, A, Montalbetti, L, Bellantoni, G, Trotti, R, Melzi d’Eril, GV 1996Reference values of neuroactive amino acids in the cerebrospinal fluid by high-performance liquid chromatography with electrochemical and fluorescence detectionJ Chromatogr A729181188PubMedCrossRefGoogle Scholar
  32. Schoonenboom, NS, Pijnenburg, YA, Mulder, C, Rosso, SM, Van Elk, EJ, Van Kamp, GJ, Van Swieten, JC, Scheltens, P 2004Amyloid beta(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer diseaseNeurology6215801584PubMedGoogle Scholar
  33. Snaedal, J, Kristinsson, J, Gunnarsdottir, S, Olafsdottir, E, Baldvinsson, M, Johannesson, T 1998Copper, ceruloplasmin and superoxide dismutase in patients with Alzheimer’s disease. A case-control studyDement Geriatr Cogn Disord9239242PubMedCrossRefGoogle Scholar
  34. Squitti, R, Lupoi, D, Pasqualetti, P, Dal Forno, G, Vernieri, F, Chiovenda, P, Rossi, L, Cortesi, M, Cassetta, E, Rossini, PM 2002Elevation of serum copper levels in Alzheimer’s diseaseNeurology5911531161PubMedGoogle Scholar
  35. Torsdottir, G, Kristinsson, J, Hreidarsson, S, Snaedal, J, Johannesson, T 2001Copper, ceruloplasmin and superoxide dismutase (SOD1) in patients with Down’s syndromePharmacol Toxicol89320325PubMedCrossRefGoogle Scholar
  36. Treiber, C, Simons, A, Strauss, M, Hafner, M, Cappai, R, Bayer, TA, Multhaup, G 2004Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer’s DiseaseJ Biol Chem2795195851964PubMedCrossRefGoogle Scholar
  37. Turnlund, JR, Jacob, RA, Keen, CL, Strain, JJ, Kelley, DS, Domek, JM, Keyes, WR, Ensunsa, JL, Lykkesfeldt, J, Coulter, J 2004Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young menAm J Clin Nutr7910371044PubMedGoogle Scholar
  38. White, AR, Reyes, R, Mercer, JF, Camakaris, J, Zheng, H, Bush, AI, Multhaup, G, Beyreuther, K, Masters, CL, Cappai, R 1999Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout miceBrain Res842439444PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. Kessler
    • 1
  • F.-G. Pajonk
    • 1
  • P. Meisser
    • 1
  • T. Schneider-Axmann
    • 1
  • K.-H. Hoffmann
    • 1
  • T. Supprian
    • 1
  • W. Herrmann
    • 2
  • R. Obeid
    • 2
  • G. Multhaup
    • 3
  • P. Falkai
    • 1
  • T. A. Bayer
    • 1
  1. 1.Department of Psychiatry and PsychotherapySaarland UniversityHomburg/SaarGermany
  2. 2.Department for Clinical Chemistry, Central LaboratorySaarland University HospitalHomburg/SaarGermany
  3. 3.Institute for Chemistry-BiochemistryFree University of BerlinBerlinGermany

Personalised recommendations