Advertisement

Journal of Neural Transmission

, Volume 113, Issue 6, pp 741–749 | Cite as

Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle

  • F. Tribl
  • K. Marcus
  • H. E. Meyer
  • G. Bringmann
  • M. Gerlach
  • P. Riederer
Review

Summary.

The powerful combination of subcellular fractionation and protein identification by electrospray ionization tandem mass spectrometry (ESI-MS/MS) pioneered the molecular elucidation of neuromelanin (NM) granules. We recently isolated NM granules from the human brain and succeeded in the establishment of the first protein profile of this compartment. NM granules are pigmented organelles, which are mainly found in the catecholaminergic neurons of the human substantia nigra (SN) pars compacta and the locus coeruleus. These granules contain the insoluble pigment NM, which is regarded as the most important iron storage system in these neurons. A global examination of NM granules, however, has so far been hampered due to the lack of a pigmented brain stem in rodents, the absence of an appropriate experimental system and their scarcity in the human brain. ‘Subcellular proteomics’, which increasingly emerges as the method of choice to characterize cellular compartments and to elucidate their biogenesis, has recently been shown to be an adequate approach to tackle a thorough description of NM granules. Thereby, NM granules could be described as a ‘lysosome-related organelle’. This indicates a genetic program underlying a biogenesis of NM rather than its autoxidative formation.

Keywords: Proteomics, lysosome-related organelle, neuromelanin. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold, R, Goodlett, DR 2001Mass spectrometry in proteomicsChem Rev101269295PubMedCrossRefGoogle Scholar
  2. Bagshaw, RD, Mahuran, DJ, Callahan, JW 2005A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelleMol Cell Proteomics4133143PubMedCrossRefGoogle Scholar
  3. Basrur, V, Yang, F, Kushimoto, T, Higashimoto, Y, Yasumoto, K, Valencia, J, Muller, J, Vieira, WD, Watabe, H, Shabanowitz, J, Hearing, VJ, Hunt, DF, Appella, E 2003Proteomic analysis of early melanosomes: identification of novel melanosomal proteinsJ Proteome Res26979PubMedCrossRefGoogle Scholar
  4. Bolzoni, F, Giraudo, S, Lopiano, L, Bergamasco, B, Fasano, M, Crippa, PR 2002Magnetic investigations of human mesencephalic neuromelaninBiochim Biophys Acta1586210218PubMedGoogle Scholar
  5. Burggraf, D, Weber, G, Lottspeich, F 1995Free flow-isoelectric focusing of human cellular lysates as sample preparation for protein analysisElectrophoresis1610101015PubMedCrossRefGoogle Scholar
  6. Dell’Angelica, EC, Mullins, C, Caplan, S, Bonifacino, JS 2000Lysosome-related organellesFaseb J1412651278PubMedCrossRefGoogle Scholar
  7. Dexter, DT, Wells, FR, Agid, F, Agid, Y, Lees, AJ, Jenner, P, Marsden, CD 1987Increased nigral iron content in postmortem parkinsonian brainLancet212191220PubMedCrossRefGoogle Scholar
  8. Double, KL, Zecca, L, Costi, P, Mauer, M, Griesinger, C, Ito, S, Ben-Shachar, D, Bringmann, G, Fariello, RG, Riederer, P, Gerlach, M 2000Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melaninsJ Neurochem7525832589PubMedCrossRefGoogle Scholar
  9. Dreger, M 2003Subcellular proteomicsMass Spectrom Rev222756PubMedCrossRefGoogle Scholar
  10. Duffy, PE, Tennyson, VM 1965Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and the locus caeruleus in Parkinson’s diseaseJ Neuropathol Exp Neurol24398414Google Scholar
  11. Dzierzega-Lecznar, A, Kurkiewicz, S, Stepien, K, Chodurek, E, Wilczok, T, Arzberger, T, Riederer, P, Gerlach, M 2004GC/MS analysis of thermally degraded neuromelanin from the human substantia nigraJ Am Soc Mass Spectrom15920926PubMedCrossRefGoogle Scholar
  12. Fasano, M, Giraudo, S, Coha, S, Bergamasco, B, Lopiano, L 2003Residual substantia nigra neuromelanin in Parkinson’s disease is cross-linked to alpha-synucleinNeurochem Int42603606PubMedCrossRefGoogle Scholar
  13. Fedorow, H, Halliday, GM, Rickert, CH, Gerlach, M, Riederer, P, Double, KL 2006Evidence for specific phases in the development of human neuromelaninNeurobiol Aging27506512PubMedCrossRefGoogle Scholar
  14. Fedorow, H, Tribl, F, Halliday, G, Gerlach, M, Riederer, P, Double, KL 2005Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s diseaseProg Neurobiol75109124PubMedCrossRefGoogle Scholar
  15. Gerlach, M, Trautwein, AX, Zecca, L, Youdim, MB, Riederer, P 1995Mossbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigraJ Neurochem65923926PubMedCrossRefGoogle Scholar
  16. Graham JM, Rickwood D (1997) Subcellular Fractionation: A Practical Approach, Oxford University Press, 339 ppGoogle Scholar
  17. Haavik, J 1997L-DOPA is a substrate for tyrosine hydroxylaseJ Neurochem6917201728PubMedCrossRefGoogle Scholar
  18. Halliday, GM, Ophof, A, Broe, M, Jensen, PH, Kettle, E, Fedorow, H, Cartwright, MI, Griffiths, FM, Shepherd, CE, Double, KL 2005Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s diseaseBrain12826542664PubMedCrossRefGoogle Scholar
  19. Hirsch, E, Graybiel, AM, Agid, YA 1988Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s diseaseNature334345348PubMedCrossRefGoogle Scholar
  20. Huber, LA, Pfaller, K, Vietor, I 2003Organelle proteomics: implications for subcellular fractionation in proteomicsCirc Res92962968PubMedCrossRefGoogle Scholar
  21. Jellinger, K, Kienzl, E, Rumpelmair, G, Riederer, P, Stachelberger, H, Ben-Shachar, D, Youdim, MB 1992Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysisJ Neurochem5911681171PubMedGoogle Scholar
  22. Jung, E, Heller, M, Sanchez, JC, Hochstrasser, DF 2000Proteomics meets cell biology: the establishment of subcellular proteomesElectrophoresis2133693377PubMedCrossRefGoogle Scholar
  23. Kastner, A, Hirsch, EC, Lejeune, O, Javoy-Agid, F, Rascol, O, Agid, Y 1992Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content?J Neurochem5910801089PubMedGoogle Scholar
  24. Kellner R, Lottspeich F, Meyer HE (1999) Microcharacterization of Proteins, 2nd, Wiley-VCH, 300 ppGoogle Scholar
  25. Klose, J 1975Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammalsHumangenetik26231243PubMedGoogle Scholar
  26. Kushimoto, T, Basrur, V, Valencia, J, Matsunaga, J, Vieira, WD, Ferrans, VJ, Muller, J, Appella, E, Hearing, VJ 2001A model for melanosome biogenesis based on the purification and analysis of early melanosomesProc Natl Acad Sci USA981069810703PubMedCrossRefGoogle Scholar
  27. Liu H, Lin D, Yates JR 3rd (2002) Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques 32: 898, 900, 902 passimGoogle Scholar
  28. Lottspeich, F 1999Proteome Analysis: A Pathway to the Functional Analysis of ProteinsAngew Chem Int Ed Engl3824762492PubMedCrossRefGoogle Scholar
  29. Marsden, CD 1961Pigmentation in the nucleus substantiae nigrae of mammalsJ Anat95256261PubMedGoogle Scholar
  30. Moses, HL, Ganote, CE, Beaver, DL, Schuffman, SS 1966Light and electron microscopic studies of pigment in human and rhesus monkey substantia nigra and locus coeruleusAnat Rec155167183PubMedCrossRefGoogle Scholar
  31. Raposo, G, Fevrier, B, Stoorvogel, W, Marks, MS 2002Lysosome-related organelles: a view from immunity and pigmentationCell Struct Funct27443456PubMedCrossRefGoogle Scholar
  32. Riederer, P, Rausch, WD, Schmidt, B, Kruzik, P, Konradi, C, Sofic, E, Danielczyk, W, Fischer, M, Ogris, E 1988Biochemical fundamentals of Parkinson’s diseaseMt Sinai J Med552128PubMedGoogle Scholar
  33. Riederer, P, Sofic, E, Rausch, WD, Kruzik, P, Youdim, MBH 1985Dopaminforschung heute und morgen – L-Dopa in der ZukunftUmek, H eds. L-Dopa-Substitution der Parkinson-Krankheit: Geschichte – Gegenwart – ZukunftSpringerWien New York127144Google Scholar
  34. Riederer, P, Sofic, E, Rausch, WD, Schmidt, B, Reynolds, GP, Jellinger, K, Youdim, MB 1989Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brainsJ Neurochem52515520PubMedGoogle Scholar
  35. Righetti, PG, Castagna, A, Antonioli, P, Boschetti, E 2005Prefractionation techniques in proteome analysis: the mining tools of the third millenniumElectrophoresis26297319PubMedCrossRefGoogle Scholar
  36. Shamoto-Nagai, M, Maruyama, W, Akao, Y, Osawa, T, Tribl, F, Gerlach, M, Zucca, FA, Zecca, L, Riederer, P, Naoi, M 2004Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cellsJ Neural Transm11112531265PubMedCrossRefGoogle Scholar
  37. Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2005) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm (in print)Google Scholar
  38. Thong, PSP, Watt, F, Pontaj, D, Leong, SK, He, Y, Lee, TKY 1999Iron and cell death in Parkinson’s disease: a nuclear microscopic study into iron-rich granules in the parkinsonian substantia nigra of primate modelsNucl Instr and Meth in Phys Res B158349355CrossRefGoogle Scholar
  39. Tribl, F, Gerlach, M, Marcus, K, Asan, E, Tatschner, T, Arzberger, T, Meyer, HE, Bringmann, G, Riederer, P 2005“Subcellular proteomics” of neuromelanin granules isolated from the human brainMol Cell Proteomics4945957PubMedCrossRefGoogle Scholar
  40. Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P (2006) Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm (in print)Google Scholar
  41. Wang, H, Hanash, S 2003Multi-dimensional liquid phase based separations in proteomicsJ Chromatogr B Analyt Technol Biomed Life Sci7871118PubMedGoogle Scholar
  42. Wolters, DA, Washburn, MP, Yates, JR,3rd 2001An automated multidimensional protein identification technology for shotgun proteomicsAnal Chem7356835690PubMedCrossRefGoogle Scholar
  43. Yates, JR,3rd, Gilchrist, A, Howell, KE, Bergeron, JJ 2005Proteomics of organelles and large cellular structuresNat Rev Mol Cell Biol6702714PubMedGoogle Scholar
  44. Youdim, MB, Ben-Shachar, D, Riederer, P 1994The enigma of neuromelanin in Parkinson’s disease substantia nigraJ Neural Transm Suppl43113122PubMedGoogle Scholar
  45. Zecca, L, Youdim, MB, Riederer, P, Connor, JR, Crichton, RR 2004Iron, brain ageing and neurodegenerative disordersNat Rev Neurosci5863873PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • F. Tribl
    • 1
    • 3
    • 5
  • K. Marcus
    • 2
  • H. E. Meyer
    • 2
  • G. Bringmann
    • 3
  • M. Gerlach
    • 4
  • P. Riederer
    • 1
    • 5
  1. 1.National Parkinson Foundation (NPF) Research LaboratoryMiamiUSA
  2. 2.Medical Proteome-Center, Ruhr-University BochumBochumGermany
  3. 3.Institute of Organic Chemistry, University of WürzburgGermany
  4. 4.Clinical Neurochemistry, Department of Child and Adolescent Psychiatry and PsychotherapyUniversity of WürzburgGermany
  5. 5.Clinical Neurochemistry, Department of Psychiatry and PsychotherapyUniversity of WürzburgGermany

Personalised recommendations