Advertisement

Journal of Neural Transmission

, Volume 113, Issue 6, pp 735–739 | Cite as

Investigation of the lipid component of neuromelanin

  • H. Fedorow
  • R. Pickford
  • E. Kettle
  • M. Cartwright
  • G. M. Halliday
  • M. Gerlach
  • P. Riederer
  • B. Garner
  • K. L. Double
Article

Summary.

Objective: Neuromelanin (NM) is different to other melanins in that its ultrastructure includes a lipid component. The objectives of this study were to identify and quantify lipids associated with NM. Results: Quantification of the lipid component associated with the pigment on electron micrographs demonstrated that this component comprises 35% of the NM granule volume in the normal brain. The irregular ultrastructural appearance of the NM granules was quite different to the round regular boundary of melanin granules. Using reversed phase high performance liquid chromatography (HPLC) coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry we demonstrated that the isoprenoid dolichol accounted for approximately 12% of total NM pigment mass. Low levels of other lipids were detectable (cholesterol, ubiquinone-10 and α-tocopherol) and account for <0.05% of NM lipid, in contrast to cholesterol accounting for 35% of total brain lipids. Conclusion: Unlike other melanins, a substantial proportion of NM volume is comprised of lipid and the major type of lipid associated with NM granules is the isoprenoid dolichol.

Keywords

Lipid Cholesterol High Performance Liquid Chromatography Electron Micrographs Normal Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aime, S, Bergamasco, B, Casu, M, Digilio, G, Fasano, M, Giraudo, S, Lopiano, L 2000Isolation and 13C-NMR characterization of an insoluble proteinaceous fraction from substantia nigra of patients with Parkinson’s diseaseMov Disord15977981PubMedCrossRefGoogle Scholar
  2. Andersson, M, Appelkvist, EL, Kristensson, K, Dallner, G 1987Distribution of dolichol and dolichyl phosphate in human brainJ Neurochem49685691PubMedGoogle Scholar
  3. Bergamini, E, Bizzarri, R, Cavallini, G, Cerbai, B, Chiellini, E, Donati, A, Gori, Z, Manfrini, A, Parentini, I, Signori, F, Tamburini, I 2004Ageing and oxidative stress: a role for dolichol in the antioxidant machinery of cell membranes?J Alzheimers Dis6129135PubMedGoogle Scholar
  4. de Ropp, JS, Troy, FA 19852H NMR investigation of the organization and dynamics of polyisoprenols in membranesJ Biol Chem2601566915674PubMedGoogle Scholar
  5. Double, KL, Zecca, L, Costi, P, Mauer, M, Griesinger, C, Ito, S, Ben-Shachar, D, Bringmann, G, Fariello, RG, Riederer, P, Gerlach, M 2000Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melaninsJ Neurochem7525832589PubMedCrossRefGoogle Scholar
  6. Duffy, PE, Tennyson, VM 1965Phase and electron microscopic observations of lewy bodies and melanin granules in the substantia nigra and locus caeruleus in Parkinson’s diseaseJ Neuropathol Exp Neurol24398414Google Scholar
  7. Ericsson, J, Chojnacki, T, Dallner, G 1987Separation and quantitation of dolichyl esters by high-performance liquid chromatographyAnal Biochem167222227PubMedCrossRefGoogle Scholar
  8. Fedorow, H, Pickford, R, Hook, J, Double, KL, Halliday, GM, Gerlach, M, Riederer, P, Garner, B 2005Dolichol is the major lipid in human substantia nigra neuromelaninJ Neurochem92990995PubMedCrossRefGoogle Scholar
  9. Garner, B, Baoutina, A, Dean, RT, Jessup, W 1997Regulation of serum-induced lipid accumulation in human monocyte-derived macrophages by interferon-gamma. Correlations with apolipoprotein E production, lipoprotein lipase activity and LDL receptor-related protein expressionAtherosclerosis1284758PubMedCrossRefGoogle Scholar
  10. Halliday, GM, Ophof, A, Broe, M, Jensen, PH, Kettle, E, Fedorow, HS, Cartwright, MI, Griffiths, FM, Shepherd, CE, Double, KL 2005α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s diseaseBrain12826592669Google Scholar
  11. Tribl, F, Gerlach, M, Marcus, K, Asan, E, Tatschner, T, Arzberger, T, Meyer, HE, Bringmann, G, Riederer, P 2005‘Subcellular Proteomics’ of neuromelanin granules isolated from the human brainMol Cell Proteomics4945957PubMedCrossRefGoogle Scholar
  12. Varki, A, Cummings, R, Esko, J, Freeze, H, Hart, G, Marth, J 1999Essentials of GlycobiologyCold Spring Harbor Laboratory PressPlainview, NYGoogle Scholar
  13. Zecca, L, Costi, P, Mecacci, C, Ito, S, Terreni, M, Sonnino, S 2000Interaction of human substantia nigra neuromelanin with lipids and peptidesJ Neurochem7417581765PubMedCrossRefGoogle Scholar
  14. Zhou, GP, Troy, FA,2nd 2004NMR Study of the preferred membrane orientation of polyisoprenols (Dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structureGlycobiology15347359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. Fedorow
    • 1
  • R. Pickford
    • 2
  • E. Kettle
    • 1
  • M. Cartwright
    • 1
  • G. M. Halliday
    • 1
  • M. Gerlach
    • 3
  • P. Riederer
    • 3
  • B. Garner
    • 1
  • K. L. Double
    • 1
  1. 1.Prince of Wales Medical Research Institute, University of New South WalesSydneyAustralia
  2. 2.Bioanalytical Mass Spectrometry Facility, University of New South WalesSydneyAustralia
  3. 3.Clinical Neurochemistry, Department of Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany

Personalised recommendations