Journal of Neural Transmission

, Volume 113, Issue 10, pp 1487–1497

A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells-imply a new mechanism in Alzheimer pathology

  • Y. Zhang
  • H.-L. Li
  • D.-L. Wang
  • S.-J. Liu
  • J.-Z. Wang
Article

Summary.

Overactivation of protein kinase in the end stage of Alzheimer’s disease brain has not been established. The purpose of the present study was to explore the possible mechanism for protein kinases in leading to Alzheimer-like tau hyperphosphorylation. We found that incubation of N2a/tau441 with forskolin, a specific activator of cAMP-dependent protein kinase (PKA), induced an increased phosphorylation level of tau at both PKA and non-PKA sites in a dose- and time-dependent manner, and the hyperphosphorylation of tau was positively correlated with the elevation of PKA activity. When the cells were transitorily incubated with forskolin, a temporary activation of PKA with a sustained and almost equally graded tau hyperphosphorylation at some non-PKA sites was observed. In either case, the activity of glycogen synthase kinase-3 (GSK-3) was not changed. It is suggested that only transitory activation of PKA in early stage of Alzheimer disease may result in a sustained tau hyperphosphorylation at multiple sites, implying a new mechanism to Alzheimer-like tau hyperphosphorylation.

Keywords: Alzheimer’s disease, tau, cAMP-dependent protein kinase, glycogen synthase kinase-3, abnormal hyperphosphorylation. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adashi, EY, Resnick, CE 19863′,5′-cyclic adenosine monophosphate as an intracellular second messenger of luteinizing hormone: application of the forskolin criteriaJ Cell Biochem31217228PubMedCrossRefGoogle Scholar
  2. Avila, J, Lucas, JJ, Perez, M, Hernandez, F 2004Role of tau protein in both physiological and pathological conditionsPhysiol Rev84361384PubMedCrossRefGoogle Scholar
  3. Bennecib, M, Gong, CX, Grundke-Iqbal, I, Iqbal, K 2000Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrainFEBS Lett4858793PubMedCrossRefGoogle Scholar
  4. Bhat, RV, Budd Haeberlein, SL, Avila, J 2004Glycogen synthase kinase 3: a drug target for CNS therapiesJ Neurochem8913131317PubMedCrossRefGoogle Scholar
  5. Biernat, J, Mandelkow, EM, Schroter, C, Lichtenberg-Kraag, B, Steiner, B, Berling, B, Meyer, H, Mercken, M, Vandermeeren, A, Goedert, M,  et al. 1992The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding regionEMBO J1115931597PubMedGoogle Scholar
  6. Braak, E, Braak, H, Mandelkow, EM 1994A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threadsActa Neuropathol (Berl)87554567Google Scholar
  7. Casnellie, JE 1991Assay of protein kinases using peptides with basic residues for phosphocellulose bindingMeth Enzymol200115120PubMedCrossRefGoogle Scholar
  8. Gong, CX, Liu, F, Grundke-Iqbal, I, Iqbal, K 2005Post-translational modifications of tau protein in Alzheimer’s diseaseJ Neural Transm112813838PubMedCrossRefGoogle Scholar
  9. Greenwood, JA, Scott, CW, Spreen, RC, Caputo, CB, Johnson, GV 1994Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptorJ Biol Chem26943734380PubMedGoogle Scholar
  10. Grundke-Iqbal, I, Iqbal, K, Tung, YC, Quinlan, M, Wisniewski, HM, Binder, LI 1986Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathologyProc Natl Acad Sci USA8349134917PubMedCrossRefGoogle Scholar
  11. Iqbal, K, Grundke-Iqbal, I, Zaidi, T, Merz, PA, Wen, GY, Shaikh, SS, Wisniewski, HM, Alafuzoff, I, Winblad, B 1986Defective brain microtubule assembly in Alzheimer’s diseaseLancetii421426CrossRefGoogle Scholar
  12. Iqbal, K, Alonso, A del C, El-Akkad, E, Gong, C-X, Haque, N, Khatoon, S, Pei, JJ, Tsujio, I, Wang, JZ, Grundke-Iqbal, I 2002Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesionJ Mol Neurosci199599PubMedGoogle Scholar
  13. Kemp, BE, Graves, DJ, Benjamini, E, Krebs, EG 1977Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinaseJ Biol Chem25248884894PubMedGoogle Scholar
  14. Kopke, E, Tung, YC, Shaikh, S, Alonso, AC, Iqbal, K, Grundke-Iqbal, I 1993Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer diseaseJ Biol Chem2682437424384PubMedGoogle Scholar
  15. Kosik, KS 1992Alzheimer’s disease: a cell biological perspectiveScience256780783PubMedGoogle Scholar
  16. Ksiezak-Reding, H, Binder, LI, Yen, SH 1988Immunochemical and biochemical characterization of tau proteins in normal and Alzheimer’s disease brains with Alz 50 and Tau-1J Biol Chem26379487953PubMedGoogle Scholar
  17. Ksiezak-Reding, H, Binder, LI, Yen, SH 1990Alzheimer disease proteins (A68) share epitopes with tau but show distinct biochemical propertiesJ Neurosci Res25420430PubMedCrossRefGoogle Scholar
  18. Lau, LF, Schachter, JB, Seymour, PA, Sanner, MA 2002Tau protein phosphorylation as a therapeutic target in Alzheimer’s diseaseCurr Top Med Chem2395415PubMedCrossRefGoogle Scholar
  19. Laurenza, A, Sutkowski, EM, Seamon, KB 1989Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action?Trends Pharmacol Sci10442447PubMedCrossRefGoogle Scholar
  20. Lee, VM, Balin, BJ, Otvos, L,Jr, Trojanowski, JQ 1991A68: a major subunit of paired helical filaments and derivatized forms of normal TauScience251675678PubMedGoogle Scholar
  21. Liu, SJ, Zhang, AH, Li, HL, Wang, Q, Deng, HM, Netzer, WJ, Xu, H, Wang, JZ 2003Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memoryJ Neurochem8713331344PubMedCrossRefGoogle Scholar
  22. Liu, SJ, Zhang, JY, Li, HL, Fang, ZY, Wang, Q, Deng, HM, Gong, CX, Grundke-Iqbal, I, Iqbal, K, Wang, JZ 2004Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brainJ Biol Chem2795007850088PubMedCrossRefGoogle Scholar
  23. Morishima-Kawashima, M, Hasegawa, M, Takio, K, Suzuki, M, Yoshida, H, Watanabe, A, Titani, K, Ihara, Y 1995Hyperphosphorylation of tau in PHFNeurobiol Aging16365380PubMedCrossRefGoogle Scholar
  24. Pei, JJ, Tanaka, T, Tung, YC, Braak, E, Iqbal, K, Grundke-Iqbal, I 1997Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brainJ Neuropathol Exp Neurol567078PubMedGoogle Scholar
  25. Singh, TJ, Zaidi, T, Grundke-Iqbal, I, Iqbal, K 1996Non-proline-dependent protein kinases phosphorylate several sites found in tau from Alzheimer disease brainMol Cell Biochem154143151PubMedCrossRefGoogle Scholar
  26. Sun, L, Liu, SY, Zhou, XW, Wang, XC, Liu, R, Wang, Q, Wang, JZ 2003Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in ratsNeurosci11811751182CrossRefGoogle Scholar
  27. Sun, L, Wang, X, Liu, S, Wang, Q, Wang, J, Bennecib, M, Gong, CX, Sengupta, A, Grundke-Iqbal, I, Iqbal, K 2005Bilateral injection of isoproterenol into hippocampus induces Alzheimer-like hyperphosphorylation of tau and spatial memory deficit in ratFEBS Lett579251258PubMedCrossRefGoogle Scholar
  28. Tanaka, T, Zhong, J, Iqbal, K, Trenkner, E, Grundke-Iqbal, I 1998The regulation of phosphorylation of tau in SY5Y neuroblastoma cells: the role of protein phosphatasesFEBS Lett426248254PubMedCrossRefGoogle Scholar
  29. Tolnay, M, Probst, A 1999Tau protein pathology in Alzheimer’s disease and related disordersNeuropathol Appl Neurobiol25171187PubMedCrossRefGoogle Scholar
  30. Tsujio, I, Tanaka, T, Kudo, T, Nishikawa, T, Shinozaki, K, Grundke-Iqbal, I, Iqbal, K, Takeda, M 2000Inactivation of glycogen synthase kinase-3 by protein kinase C delta: implications for regulation of tau phosphorylationFEBS Lett469111117PubMedCrossRefGoogle Scholar
  31. Wang, JZ, Wu, Q, Smith, A, Grundke-Iqbal, I, Iqbal, K 1998Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinaseFEBS Lett4362834PubMedCrossRefGoogle Scholar
  32. Wang, XC, Hu, ZH, Tang, XW, Wu, YG, Wang, JZ 2004Correlation of Alzheimer-like tau abnormal hyperphosphorylation and fMRI BOLD signal intensityJ Curr Alz Res1143145CrossRefGoogle Scholar
  33. Weingarten, MD, Lockwood, AH, Hwo, SY, Kirschner, MW 1975A protein factor essential for microtubule assemblyProc Natl Acad Sci USA7218581862PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Y. Zhang
    • 1
  • H.-L. Li
    • 1
  • D.-L. Wang
    • 1
  • S.-J. Liu
    • 1
  • J.-Z. Wang
    • 1
  1. 1.Pathophysiology Department, Key Laboratory for Neurological Diseases of Hubei Province, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations