Advertisement

5-ALA fluorescence–guided surgery in pediatric brain tumors—a systematic review

  • Michael SchwakeEmail author
  • Stephanie Schipmann
  • Michael Müther
  • Michaela Köchling
  • Angela Brentrup
  • Walter Stummer
Review Article - Pediatric Neurosurgery
  • 14 Downloads
Part of the following topical collections:
  1. Pediatric Neurosurgery

Abstract

Background

5-Aminolevulinic acid (5-ALA)-guided resection of gliomas in adults enables better differentiation between tumor and normal brain tissue, allowing a higher degree of resection, and improves patient outcomes. In recent years, several reports have emerged regarding the use of 5-ALA in other brain tumor entities, including pediatric brains tumors. Since gross total resection (GTR) of many brain tumors in children is crucial and the role of 5-ALA-guided resection of these tumors is not clear, we sought to perform a comprehensive literature review on this topic.

Methods

A systematic literature review of EMBASE and MEDLINE/PubMed databases revealed 19 eligible publications encompassing 175 5-ALA-guided operations on pediatric brain tumors. To prevent bias, publications were revised independently by two authors.

Results

We found that 5-ALA-guided resection enabled the surgeons to identify the tumor more easily and was considered helpful mainly in cases of glioblastoma (GBM, 21/27, 78%), anaplastic ependymoma WHO grade III (10/14, 71%), and anaplastic astrocytoma (4/6, 67%). In contrast, cases of pilocytic astrocytomas (PAs) and medulloblastomas 5-ALA-guided surgery did not show consistent fluorescent signals and 5-ALA was considered helpful only in 12% and 22% of cases, respectively. Accumulation of fluorescent porphyrins seems to depend on WHO tumor grading. One important finding is that when 5-ALA-guided resections were considered helpful, the degree of resection was higher than is cases where it was not helpful. The rate of adverse events related to 5-ALA was negligible, especially new postoperative sequelae.

Conclusion

5-ALA could play a role in resection of pediatric brain tumors. However, further prospective clinical trials are needed.

Keywords

5-ALA Pediatric brain tumors Tumor resection 

Notes

Compliance with ethical standards

Conflict of interest

Walter Stummer has received consultant fees from Medac, Wedel, Germany. All other authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

References

  1. 1.
    Abernethy LJ, Avula S, Hughes GM, Wright EJ, Mallucci CL (2012) Intra-operative 3-T MRI for paediatric brain tumours: challenges and perspectives. Pediatr Radiol 42(2):147–157Google Scholar
  2. 2.
    Agawa Y, Wataya T (2018) The use of 5-aminolevulinic acid to assist gross total resection of pediatric astroblastoma. Childs Nerv Syst 34(5):971–975Google Scholar
  3. 3.
    Albright AL (1993) Pediatric brain tumors. CA Cancer J Clin 43(5):272–288Google Scholar
  4. 4.
    Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P (1996) Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 38(2):265–271Google Scholar
  5. 5.
    Albright AL, Wisoff JH, Zeltzer P, Boyett J, Rorke LB, Stanley P, Geyer JR, Milstein JM (1995) Prognostic factors in children with supratentorial (nonpineal) primitive neuroectodermal tumors. A neurosurgical perspective from the Children’s Cancer Group. Pediatr Neurosurg 22(1):1–7Google Scholar
  6. 6.
    Barbagallo GMV, Certo F, Heiss K, Albanese V (2014) 5-ALA fluorescence-assisted surgery in pediatric brain tumors: report of three cases and review of the literature. Br J Neurosurg 28(6):750–754Google Scholar
  7. 7.
    Beez T, Sarikaya-Seiwert S, Steiger H-J, Hänggi D (2014) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children—a technical report. Acta Neurochir 156(3):597–604Google Scholar
  8. 8.
    Bernal García LM, Cabezudo Artero JM, Royano Sánchez M, Marcelo Zamorano MB, López Macías M (2015) Fluorescence-guided resection with 5-aminolevulinic acid of meningeal sarcoma in a child. Childs Nerv Syst 31(7):1177–1180Google Scholar
  9. 9.
    Braunstein S, Raleigh D, Bindra R, Mueller S, Haas-Kogan D (2017) Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neuro-Oncol 134(3):541–549Google Scholar
  10. 10.
    Briel-Pump A, Beez T, Ebbert L, Remke M, Weinhold S, Sabel MC, Sorg RV (2018) Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment. J Photochem Photobiol B Biol 189:298–305Google Scholar
  11. 11.
    Burford MC, Kalyal MN, Pandit DA et al (2017) PP39. 5-Aminolevulinic acid aided resection of paediatric brain tumours: the UK’S first case series. Neuro-Oncology 19(suppl_1):i11Google Scholar
  12. 12.
    Cavalli FMG, Remke M, Rampasek L et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31(6):737–754.e6Google Scholar
  13. 13.
    Cho Y-J, Tsherniak A, Tamayo P et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29(11):1424–1430Google Scholar
  14. 14.
    Chu ESM, Wong TKS, Yow CMN (2007) Photodynamic effect in medulloblastoma: downregulation of matrix metalloproteinases and human telomerase reverse transcriptase expressions. Photochem Photobiol Sci 7(1):76–83Google Scholar
  15. 15.
    Díez Valle R, Slof J, Galván J, Arza C, Romariz C, Vidal C (2014) Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (the VISIONA study). Neurologia 29(3):131–138Google Scholar
  16. 16.
    Duffner PK, Cohen ME, Myers MH, Heise HW (1986) Survival of children with brain tumors: SEER Program, 1973-1980. Neurology 36(5):597–601Google Scholar
  17. 17.
    Eicker SO, Floeth FW, Kamp M, Steiger H-J, Hänggi D (2013) The impact of fluorescence guidance on spinal intradural tumour surgery. Eur Spine J 22(6):1394–1401Google Scholar
  18. 18.
    Eicker S, Sarikaya-Seiwert S, Borkhardt A, Gierga K, Turowski B, Heiroth H-J, Steiger H-J, Stummer W (2011) ALA-induced porphyrin accumulation in medulloblastoma and its use for fluorescence-guided surgery. Cent Eur Neurosurg 72(2):101–103Google Scholar
  19. 19.
    Eyüpoglu IY, Hore N, Savaskan NE, Grummich P, Roessler K, Buchfelder M, Ganslandt O (2012) Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One 7(9):e44885Google Scholar
  20. 20.
    Feigl GC, Ritz R, Moraes M et al (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113(2):352–357Google Scholar
  21. 21.
    Giordano M, Samii A, Lawson McLean AC, Bertalanffy H, Fahlbusch R, Samii M, Di Rocco C (2017) Intraoperative magnetic resonance imaging in pediatric neurosurgery: safety and utility. J Neurosurg Pediatr 19(1):77–84Google Scholar
  22. 22.
    Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48(4):799–807 discussion 807–9Google Scholar
  23. 23.
    Healey EA, Barnes PD, Kupsky WJ, Scott RM, Sallan SE, Black PM, Tarbell NJ (1991) The prognostic significance of postoperative residual tumor in ependymoma. Neurosurgery 28(5):666–671 discussion 671–2Google Scholar
  24. 24.
    Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H (2008) 5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institution. Swiss Med Wkly 138(11–12):180–185Google Scholar
  25. 25.
    Hirsch JF, Sainte Rose C, Pierre-Kahn A, Pfister A, Hoppe-Hirsch E (1989) Benign astrocytic and oligodendrocytic tumors of the cerebral hemispheres in children. J Neurosurg 70(4):568–572Google Scholar
  26. 26.
    Idoate MA, Díez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31(6):575–582Google Scholar
  27. 27.
    Inoue T, Endo T, Nagamatsu K, Watanabe M, Tominaga T (2013) 5-Aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma. Neurosurgery 72(2 Suppl Operative):ons159–ons168.  https://doi.org/10.1227/NEU.0b013e31827bc7a3
  28. 28.
    Kim AV, Khachatryan VA (2017) Intraoperative fluorescence diagnosis using 5-aminolevulinic acid in surgical treatment of children with recurrent neuroepithelial tumors. Zh Vopr Neirokhir Im N N Burdenko 81(1):51Google Scholar
  29. 29.
    Kool M, Korshunov A, Remke M et al (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol 123(4):473–484Google Scholar
  30. 30.
    Kortmann RD, Kühl J, Timmermann B et al (2000) Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ‘91. Int J Radiat Oncol Biol Phys 46(2):269–279Google Scholar
  31. 31.
    Lam CH, Hall WA, Truwit CL, Liu H (2001) Intra-operative MRI-guided approaches to the pediatric posterior fossa tumors. Pediatr Neurosurg 34(6):295–300Google Scholar
  32. 32.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820Google Scholar
  33. 33.
    Maciunas RJ, Berger MS, Copeland B, Mayberg MR, Selker R, Allen GS (1996) A technique for interactive image-guided neurosurgical intervention in primary brain tumors. Neurosurg Clin N Am 7(2):245–266Google Scholar
  34. 34.
    Mansur DB (2013) Multidisciplinary management of pediatric intracranial ependymoma. CNS Oncol 2(3):247–257Google Scholar
  35. 35.
    Metellus P, Barrie M, Figarella-Branger D, Chinot O, Giorgi R, Gouvernet J, Jouvet A, Guyotat J (2007) Multicentric French study on adult intracranial ependymomas: prognostic factors analysis and therapeutic considerations from a cohort of 152 patients. Brain 130(Pt 5):1338–1349Google Scholar
  36. 36.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341Google Scholar
  37. 37.
    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1Google Scholar
  38. 38.
    Moiyadi AV, Shetty P, Degaonkar A (2017) Resection of pediatric brain tumors: intraoperative ultrasound revisited. J Pediatr Neurosci 12(1):19–23Google Scholar
  39. 39.
    Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M, 5-ALA Recurrent Glioma Study Group (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65(6):1070–1076 discussion 1076-7Google Scholar
  40. 40.
    Northcott PA, Buchhalter I, Morrissy AS et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547(7663):311–317Google Scholar
  41. 41.
    Northcott PA, Dubuc AM, Pfister S, Taylor MD (2012) Molecular subgroups of medulloblastoma. Expert Rev Neurother 12(7):871–884Google Scholar
  42. 42.
    Northcott PA, Korshunov A, Witt H et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414Google Scholar
  43. 43.
    Northcott PA, Shih DJH, Peacock J et al (2012) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488(7409):49–56Google Scholar
  44. 44.
    Orringer DA, Golby A, Jolesz F (2012) Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices 9(5):491–500Google Scholar
  45. 45.
    Osorio DS, Allen JC (2015) Management of CNS germinoma. CNS Oncol 4(4):273–279Google Scholar
  46. 46.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-Oncology 17(suppl 4):iv1–iv62Google Scholar
  47. 47.
    Packer RJ, Cogen P, Vezina G, Rorke LB (1999) Medulloblastoma: clinical and biologic aspects. Neuro-Oncology 1(3):232–250Google Scholar
  48. 48.
    Paulino AC, Wen B-C, Buatti JM, Hussey DH, Zhen WK, Mayr NA, Menezes AH (2002) Intracranial ependymomas: an analysis of prognostic factors and patterns of failure. Am J Clin Oncol 25(2):117–122Google Scholar
  49. 49.
    Piccirillo SGM, Dietz S, Madhu B, Griffiths J, Price SJ, Collins VP, Watts C (2012) Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin. Br J Cancer 107(3):462–468Google Scholar
  50. 50.
    Pichlmeier U, Bink A, Schackert G, Stummer W, ALA Glioma Study Group (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncology 10(6):1025–1034Google Scholar
  51. 51.
    Pickles JC, Hawkins C, Pietsch T, Jacques TS (2018) CNS embryonal tumours: WHO 2016 and beyond. Neuropathol Appl Neurobiol 44(2):151–162Google Scholar
  52. 52.
    Preuß M, Renner C, Krupp W et al (2013) The use of 5-aminolevulinic acid fluorescence guidance in resection of pediatric brain tumors. Childs Nerv Syst 29(8):1263–1267Google Scholar
  53. 53.
    Ritz R, Scheidle C, Noell S, Roser F, Schenk M, Dietz K, Strauss WSL (2012) In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells. PLoS One 7(12):e51974Google Scholar
  54. 54.
    Robertson PL (2006) Advances in treatment of pediatric brain tumors. NeuroRX 3(2):276–291Google Scholar
  55. 55.
    Roth J, Beni-Adani L, Biyani N, Constantini S (2006) Classical and real-time neuronavigation in pediatric neurosurgery. Childs Nerv Syst 22(9):1065–1071Google Scholar
  56. 56.
    Roth J, Biyani N, Beni-Adani L, Constantini S (2007) Real-time neuronavigation with high-quality 3D ultrasound SonoWand in pediatric neurosurgery. Pediatr Neurosurg 43(3):185–191Google Scholar
  57. 57.
    Roth J, Constantini S (2017) 5ALA in pediatric brain tumors is not routinely beneficial. Childs Nerv Syst 33(5):787–792Google Scholar
  58. 58.
    Rudin CM, Hann CL, Laterra J et al (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361(12):1173–1178Google Scholar
  59. 59.
    Ruge JR, Liu J (2009) Use of 5-aminolevulinic acid for visualization and resection of a benign pediatric brain tumor. J Neurosurg Pediatr 4(5):484–486Google Scholar
  60. 60.
    Sanai N (2012) Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol 25(6):756–766Google Scholar
  61. 61.
    Schipmann S, Keurhorst D, Köchling M, Schwake M, Heß K, Sundermann B, Stummer W, Brentrup A (2017) Regression of pineal lesions: spontaneous or iatrogenic? A case report and systematic literature review. World Neurosurg 108:939–947.e1Google Scholar
  62. 62.
    Schipmann S, Schwake M, Suero Molina E, Roeder N, Steudel W-I, Warneke N, Stummer W (2017) Quality indicators in cranial neurosurgery: which are presently substantiated? A systematic review. World Neurosurg 104:104–112Google Scholar
  63. 63.
    Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, Stieglitz L, Raabe A (2012) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71(5):927–935 discussion 935–6Google Scholar
  64. 64.
    Schulz C, Waldeck S, Mauer UM (2012) Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract 2012:197364Google Scholar
  65. 65.
    Schwake M, Günes D, Köchling M, Brentrup A, Schroeteler J, Hotfilder M, Fruehwald MC, Stummer W, Ewelt C (2014) Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid. Acta Neurochir 156(6):1077–1084Google Scholar
  66. 66.
    Schwake M, Nemes A, Dondrop J, Schroeteler J, Schipmann S, Senner V, Stummer W, Ewelt C (2018) In-vitro use of 5-ALA for photodynamic therapy in pediatric brain tumors. Neurosurgery.  https://doi.org/10.1093/neuros/nyy054
  67. 67.
    Schwalbe EC, Lindsey JC, Nakjang S et al (2017) Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18(7):958–971Google Scholar
  68. 68.
    Singhal A, Ross Hengel A, Steinbok P, Doug Cochrane D (2015) Intraoperative ultrasound in pediatric brain tumors: does the surgeon get it right? Childs Nerv Syst 31(12):2353–2357Google Scholar
  69. 69.
    Skjøth-Rasmussen J, Bøgeskov L, Sehested A, Klausen C, Broholm H, Nysom K (2015) The use of 5-ALA to assist complete removal of residual non-enhancing part of childhood medulloblastoma: a case report. Childs Nerv Syst 31(11):2173–2177Google Scholar
  70. 70.
    Smith H, Taplin A, Syed S, Adamo MA (2016) Correlation between intraoperative ultrasound and postoperative MRI in pediatric tumor surgery. J Neurosurg Pediatr 18(5):578–584Google Scholar
  71. 71.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013Google Scholar
  72. 72.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401Google Scholar
  73. 73.
    Stummer W, Reulen H-J, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–576 discussion 564-76Google Scholar
  74. 74.
    Stummer W, Rodrigues F, Schucht P et al (2014) Predicting the “usefulness” of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey. Acta Neurochir 156(12):2315–2324Google Scholar
  75. 75.
    Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J (1998) In vitro and in vivo porphyrin accumulation by c6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 25(2–3):160–169Google Scholar
  76. 76.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42(3):518–525 discussion 525–6Google Scholar
  77. 77.
    Stummer W, Tonn J-C, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence. Neurosurgery 74(3):310–320Google Scholar
  78. 78.
    Suzuki T, Ishihara S, Fukuoka K, Kohga T, Shirahata M, Adachi J, Yanagisawa T, Matsutani M, Mishima K, Fujimaki T, Nishikawa R (2012) Neuroendoscopic photodynamic diagnosis and biopsy of intraventricular germinomas using 5-aminolevulinic acidNeuroendoscopic photodynamic diagnosis and biopsy of intraventricular germinomas using a 5-aminolevulinic acid 0078. 40th Annual Meeting of the International Society for Pediatric Neurosurgery, Sydney, Australia, September 9-13, 2012. Childs Nerv Syst (2012) 28:1589–1669.  https://doi.org/10.1007/s00381-012-1849-y
  79. 79.
    Sweeney JF, Smith H, Taplin A, Perloff E, Adamo MA (2018) Efficacy of intraoperative ultrasonography in neurosurgical tumor resection. J Neurosurg Pediatr 21(5):504–510Google Scholar
  80. 80.
    Swinney C, Li A, Bhatti I, Veeravagu A (2016) Optimization of tumor resection with intra-operative magnetic resonance imaging. J Clin Neurosci 34:11–14Google Scholar
  81. 81.
    Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472Google Scholar
  82. 82.
    Tonn J-C, Stummer W (2008) Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 55:20–26Google Scholar
  83. 83.
    Tsugu A, Ishizaka H, Mizokami Y, Osada T, Baba T, Yoshiyama M, Nishiyama J, Matsumae M (2011) Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. World Neurosurg 76(1–2):120–127Google Scholar
  84. 84.
    Valdés PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT (2011) δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro Oncol 13(8):846–856.  https://doi.org/10.1093/neuonc/nor086
  85. 85.
    Valdés PA, Samkoe K, O’Hara JA, Roberts DW, Paulsen KD, Pogue BW (2010) Deferoxamine iron chelation increases delta-aminolevulinic acid induced protoporphyrin IX in xenograft glioma model. Photochem Photobiol 86(2):471–475Google Scholar
  86. 86.
    Wataya T (2017) Surg-34. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of pediatric brain tumors. Neuro-Oncology 19(Suppl 6):vi242Google Scholar
  87. 87.
    Willems PWA, van der Sprenkel JWB, Tulleken CAF, Viergever MA, Taphoorn MJB (2006) Neuronavigation and surgery of intracerebral tumours. J Neurol 253(9):1123–1136Google Scholar
  88. 88.
    Wisoff JH, Boyett JM, Berger MS et al (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer group trial no. CCG-945. J Neurosurg 89(1):52–59Google Scholar
  89. 89.
    Zebian B, Vergani F, Lavrador JP, Mukherjee S, Kitchen WJ, Stagno V, Chamilos C, Pettorini B, Mallucci C (2017) Recent technological advances in pediatric brain tumor surgery. CNS Oncol 6(1):71–82Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity Hospital MünsterMunsterGermany

Personalised recommendations