Acta Neurochirurgica

, Volume 160, Issue 3, pp 603–609 | Cite as

Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study

  • Constantin Tuleasca
  • Tatiana Witjas
  • Dimitri Van de Ville
  • Elena Najdenovska
  • Antoine Verger
  • Nadine Girard
  • Jerome Champoudry
  • Jean-Philippe Thiran
  • Meritxell Bach Cuadra
  • Marc Levivier
  • Eric Guedj
  • Jean Régis
Original Article - Functional



Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS.


Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49–82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model.


The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size Kc = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman’s rank correlation coefficient = 0.002).


Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.


Tremor Ventro-intermediate nucleus Voxel-based morphometry Visual association area Radiosurgery Thalamotomy 



This work was supported by Timone University Hospital, the Swiss National Science Foundation SNSF-205321-157,040, the Centre d’Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL), the University of Geneva (UniGe), the Centre Hospitalier Universitaire Vaudois (CHUV) and the Leenaards and Jeantet Foundations.This work was carried out thanks to the support of the A*MIDEX project (no. ANR-11-IDEX-0001-02) funded by the "Investissements d’Avenir" French Government program, managed by the French National Research Agency (ANR).

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

The study was approved by the local ethics committee of Timone University Hospital, Marseille, France. Patient consent was acquired in all cases.


  1. 1.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821CrossRefPubMedGoogle Scholar
  2. 2.
    Bagepally BS, Bhatt MD, Chandran V, Saini J, Bharath RD, Vasudev MK, Prasad C, Yadav R, Pal PK (2012) Decrease in cerebral and cerebellar gray matter in essential tremor: A voxel-based morphometric analysis under 3T MRI. J Neuroimaging Off J Am Soc Neuroimaging 22:275–278CrossRefGoogle Scholar
  3. 3.
    Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:203–214CrossRefPubMedGoogle Scholar
  4. 4.
    Benito-Leon J, Alvarez-Linera J, Hernandez-Tamames JA, Alonso-Navarro H, Jimenez-Jimenez FJ, Louis ED (2009) Brain structural changes in essential tremor: Voxel-based morphometry at 3-Tesla. J Neurol Sci 287:138–142CrossRefPubMedGoogle Scholar
  5. 5.
    Bhalsing KS, Saini J, Pal PK (2013) Understanding the pathophysiology of essential tremor through advanced neuroimaging: A review. J Neurol Sci 335:9–13CrossRefPubMedGoogle Scholar
  6. 6.
    Blomstedt P, Hariz GM, Hariz MI, Koskinen LO (2007) Thalamic deep brain stimulation in the treatment of essential tremor: A long-term follow-up. Br J Neurosurg 21:504–509CrossRefPubMedGoogle Scholar
  7. 7.
    Buijink AW, Broersma M, van der Stouwe AM, Sharifi S, Tijssen MA, Speelman JD, Maurits NM, van Rootselaar AF (2016) Cerebellar atrophy in cortical myoclonic tremor and not in hereditary essential tremor—a voxel-based morphometry study. Cerebellum 15:696–704CrossRefPubMedGoogle Scholar
  8. 8.
    Campbell AM, Glover J, Chiang VL, Gerrard J, Yu JB (2015) Gamma knife stereotactic radiosurgical thalamotomy for intractable tremor: A systematic review of the literature. Radiother Oncol J Eur Soc Ther Radiol Oncol 114:296–301CrossRefGoogle Scholar
  9. 9.
    Carrasco M (2011) Visual attention: The past 25 years. Vis Res 51:1484–1525CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cerasa A, Messina D, Nicoletti G, Novellino F, Lanza P, Condino F, Arabia G, Salsone M, Quattrone A (2009) Cerebellar atrophy in essential tremor using an automated segmentation method. AJNR Am J Neuroradiol 30:1240–1243CrossRefPubMedGoogle Scholar
  11. 11.
    Daniels C, Peller M, Wolff S, Alfke K, Witt K, Gaser C, Jansen O, Siebner HR, Deuschl G (2006) Voxel-based morphometry shows no decreases in cerebellar gray matter volume in essential tremor. Neurology 67:1452–1456CrossRefPubMedGoogle Scholar
  12. 12.
    Daniels JK, Gaebler M, Lamke JP, Walter H (2015) Grey matter alterations in patients with depersonalization disorder: A voxel-based morphometry study. J Psychiatry Neurosci JPN 40:19–27PubMedGoogle Scholar
  13. 13.
    Elble RJ (2000) Diagnostic criteria for essential tremor and differential diagnosis. Neurology 54:S2–S6CrossRefPubMedGoogle Scholar
  14. 14.
    Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, Druzgal J, Shah BB, Harrison M, Wintermark M (2013) A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369:640–648CrossRefPubMedGoogle Scholar
  15. 15.
    Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, Schwartz M, Hynynen K, Lozano AM, Shah BB, Huss D, Dallapiazza RF, Gwinn R, Witt J, Ro S, Eisenberg HM, Fishman PS, Gandhi D, Halpern CH, Chuang R, Butts Pauly K, Tierney TS, Hayes MT, Cosgrove GR, Yamaguchi T, Abe K, Taira T, Chang JW (2016) A randomized trial of focused ultrasound Thalamotomy for essential tremor. N Engl J Med 375:730–739CrossRefPubMedGoogle Scholar
  16. 16.
    Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617CrossRefPubMedGoogle Scholar
  17. 17.
    Hallett M (2012) Parkinson’s disease tremor: Pathophysiology. Parkinsonism Relat Disord 18(Suppl 1):S85–S86CrossRefPubMedGoogle Scholar
  18. 18.
    Hallett M (2014) Tremor: Pathophysiology. Parkinsonism Relat Disord 20(Suppl 1):S118–S122CrossRefPubMedGoogle Scholar
  19. 19.
    Hansel C (2009) Reading the clock: How Purkinje cells decode the phase of olivary oscillations. Neuron 62:308–309CrossRefPubMedGoogle Scholar
  20. 20.
    Hariz GM, Lindberg M, Bergenheim AT (2002) Impact of thalamic deep brain stimulation on disability and health-related quality of life in patients with essential tremor. J Neurol Neurosurg Psychiatry 72:47–52CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hua SE, Lenz FA (2005) Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol 93:117–127CrossRefPubMedGoogle Scholar
  22. 22.
    Jang C, Park HJ, Chang WS, Pae C, Chang JW (2016) Immediate and longitudinal alterations of functional networks after thalamotomy in essential tremor. Front Neurol 7:184CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kondziolka D, Ong JG, Lee JY, Moore RY, Flickinger JC, Lunsford LD (2008) Gamma Knife thalamotomy for essential tremor. J Neurosurg 108:111–117CrossRefPubMedGoogle Scholar
  24. 24.
    Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95:862–881CrossRefPubMedGoogle Scholar
  25. 25.
    Lin CH, Chen CM, Lu MK, Tsai CH, Chiou JC, Liao JR, Duann JR (2013) VBM reveals brain volume differences between Parkinson’s disease and essential tremor patients. Front Hum Neurosci 7:247CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM (2013) MR-guided focused ultrasound thalamotomy for essential tremor: A proof-of-concept study. Lancet Neurol 12:462–468CrossRefPubMedGoogle Scholar
  27. 27.
    Louis ED (2005) Essential tremor. Lancet Neurol 4:100–110CrossRefPubMedGoogle Scholar
  28. 28.
    Nagaseki Y, Shibazaki T, Hirai T, Kawashima Y, Hirato M, Wada H, Miyazaki M, Ohye C (1986) Long-term follow-up results of selective VIM-thalamotomy. J Neurosurg 65:296–302CrossRefPubMedGoogle Scholar
  29. 29.
    Nicoletti V, Cecchi P, Frosini D, Pesaresi I, Fabbri S, Diciotti S, Bonuccelli U, Cosottini M, Ceravolo R (2015) Morphometric and functional MRI changes in essential tremor with and without resting tremor. J Neurol 262:719–728CrossRefPubMedGoogle Scholar
  30. 30.
    Passamonti L, Novellino F, Cerasa A, Chiriaco C, Rocca F, Matina MS, Fera F, Quattrone A (2011) Altered cortical-cerebellar circuits during verbal working memory in essential tremor. Brain 134:2274–2286CrossRefPubMedGoogle Scholar
  31. 31.
    Popa T, Russo M, Vidailhet M, Roze E, Lehericy S, Bonnet C, Apartis E, Legrand AP, Marais L, Meunier S, Gallea C (2013) Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: An open label trial. Brain Stimul 6:175–179CrossRefPubMedGoogle Scholar
  32. 32.
    Quattrone A, Cerasa A, Messina D, Nicoletti G, Hagberg GE, Lemieux L, Novellino F, Lanza P, Arabia G, Salsone M (2008) Essential head tremor is associated with cerebellar vermis atrophy: A volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol 29:1692–1697CrossRefPubMedGoogle Scholar
  33. 33.
    Regis J, Carron R, Park M (2010) Is radiosurgery a neuromodulation therapy?: A 2009 Fabrikant award lecture. J Neuro-Oncol 98:155–162CrossRefGoogle Scholar
  34. 34.
    Sharifi S, Nederveen AJ, Booij J, van Rootselaar AF (2014) Neuroimaging essentials in essential tremor: A systematic review. NeuroImage Clin 5:217–231CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tardif E, Richer L, Bergeron A, Lepore F, Guillemot JP (1997) Spatial resolution and contrast sensitivity of single neurons in area 19 of split-chiasm cats: A comparison with primary visual cortex. Eur J Neurosci 9:1929–1939CrossRefPubMedGoogle Scholar
  36. 36.
    Tolosa E, Pena J (1988) Involuntary vocalizations in movement disorders. Adv Neurol 49:343–363PubMedGoogle Scholar
  37. 37.
    Tuleasca C, Pralong E, Najdenovska E, Cuadra MB, Marques JRF, Vingerhoets F, Regis J, Bloch J, Levivier M (2017) Deep brain stimulation after previous gamma knife thalamotomy of the vim for essential tremor is feasible! Clinical, electrophysiological and radiological findings. Acta Neurochir 159:1371–1373CrossRefPubMedGoogle Scholar
  38. 38.
    Tuleasca C, Witjas T, Najdenovska E, Verger A, Girard N, Champoudry J, Thiran JP, Van de Ville D, Bach Cuadra M, Levivier M, Guedj E, Régis J (2017) Assessing the clinical outcome of vim radiosurgery with voxel-based morphometry: Visual areas are linked with tremor arrest! Acta Neurochir.
  39. 39.
    Waberski TD, Gobbele R, Lamberty K, Buchner H, Marshall JC, Fink GR (2008) Timing of visuo-spatial information processing: Electrical source imaging related to line bisection judgements. Neuropsychologia 46:1201–1210CrossRefPubMedGoogle Scholar
  40. 40.
    Wintermark M, Huss DS, Shah BB, Tustison N, Druzgal TJ, Kassell N, Elias WJ (2014) Thalamic connectivity in patients with essential tremor treated with MR imaging-guided focused ultrasound: In vivo fiber tracking by using diffusion-tensor MR imaging. Radiology 272:202–209CrossRefPubMedGoogle Scholar
  41. 41.
    Witjas T, Carron R, Krack P, Eusebio A, Vaugoyeau M, Hariz M, Azulay JP, Regis J (2015) A prospective single-blind study of gamma knife thalamotomy for tremor. Neurology 85:1562–1568CrossRefPubMedGoogle Scholar
  42. 42.
    Zeki S (1993) The visual association cortex. Curr Opin Neurobiol 3:155–159CrossRefPubMedGoogle Scholar
  43. 43.
    Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci Off J Soc Neurosci 11:641–649Google Scholar
  44. 44.
    Zesiewicz TA, Elble R, Louis ED, Hauser RA, Sullivan KL, Dewey RB Jr, Ondo WG, Gronseth GS, Weiner WJ, Quality Standards Subcommittee of the American Academy of N (2005) Practice parameter: Therapies for essential tremor: Report of the quality standards Subcommittee of the American Academy of Neurology. Neurology 64:2008–2020CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Constantin Tuleasca
    • 1
    • 2
    • 3
  • Tatiana Witjas
    • 4
    • 5
  • Dimitri Van de Ville
    • 6
    • 12
  • Elena Najdenovska
    • 7
  • Antoine Verger
    • 5
    • 8
    • 9
  • Nadine Girard
    • 10
  • Jerome Champoudry
    • 11
  • Jean-Philippe Thiran
    • 2
    • 3
    • 13
  • Meritxell Bach Cuadra
    • 7
  • Marc Levivier
    • 1
    • 3
  • Eric Guedj
    • 5
    • 8
    • 9
  • Jean Régis
    • 11
  1. 1.Department of Clinical Neuroscience, Neurosurgery Service and Gamma Knife CenterCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
  2. 2.Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
  4. 4.Department of Neurology and Movement Disorders, Assistance Publique-Hôpitaux de MarseilleAix-Marseille Université, Timone University HospitalMarseilleFrance
  5. 5.Institut de Neurosciences de la Timone, UMR 7289CNRS Aix-Marseille UniversitéMarseilleFrance
  6. 6.Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  7. 7.Medical Image Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  8. 8.Radiology Department, Center for Biomedical Imaging (CIBM)Lausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
  9. 9.Department of Nuclear Medicine, Assistance Publique-Hôpitaux de MarseilleAix-Marseille Université, Timone University HospitalMarseilleFrance
  10. 10.CERIMEDAix-Marseille UniversitéMarseilleFrance
  11. 11.AMU, CRMBM UMR CNRS 7339, Faculté de Médecine et APHM, Department of Diagnostic and Interventionnal NeuroradiologyHopital TimoneMarseilleFrance
  12. 12.Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, CHU TimoneMarseilleFrance
  13. 13.Radiology DepartmentCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland

Personalised recommendations