Advertisement

Acta Neurochirurgica

, Volume 159, Issue 7, pp 1187–1195 | Cite as

Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report

  • Sandro M. Krieg
  • Pantelis Lioumis
  • Jyrki P. Mäkelä
  • Juha Wilenius
  • Jari Karhu
  • Henri Hannula
  • Petri Savolainen
  • Carolin Weiss Lucas
  • Kathleen Seidel
  • Aki Laakso
  • Mominul Islam
  • Selja Vaalto
  • Henri Lehtinen
  • Anne-Mari Vitikainen
  • Phiroz E. Tarapore
  • Thomas Picht
Review Article - Neurosurgical Techniques

Abstract

Introduction

Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value.

Methods

The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications.

Results

nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here.

Conclusion

At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.

Keywords

Brain tumor Epilepsy surgery Motor Language Preoperative mapping Transcranial magnetic stimulation 

Notes

Compliance with ethical standards

Funding

Nexstim Plc. (Helsinki, Finland) provided financial support in the form of travel funding to the venue site at BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. The sponsor had no role in the design or conduct of this report.

Conflicts of interest

SK and TP are consultants for Brainlab AG (Munich, Germany) and for Nexstim Plc. (Helsinki, Finland). PL is consultant for Nexstim Plc. HH, PS, and JK are employed by Nexstim Plc. Yet, all authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical approval

Since this is a report from an expert panel, no ethics approval was obtained. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

701_2017_3187_MOESM1_ESM.docx (278 kb)
ESM 1 (DOCX 277 kb)

References

  1. 1.
    Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107CrossRefPubMedGoogle Scholar
  2. 2.
    Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F, Baratta P, Songa V, Conte V, Branca V, Stocchetti N, Papagno C, Gaini SM (2007) Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 60:67–80CrossRefPubMedGoogle Scholar
  3. 3.
    Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, Pessina F, Bizzi A, Falini A, Cerri G (2014) Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro-Oncology 16:1110–1128CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Conti A, Raffa G, Granata F, Rizzo V, Germano A, Tomasello F (2014) Navigated transcranial magnetic stimulation for "somatotopic" tractography of the corticospinal tract. Neurosurgery 10(Suppl 4):542–554 discussion 554 CrossRefPubMedGoogle Scholar
  5. 5.
    Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G (2010) Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang 115:101–112CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Devlin JT, Watkins KE (2007) Stimulating language: insights from TMS. Brain 130:610–622CrossRefPubMedGoogle Scholar
  7. 7.
    Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Insola A, Mazzone P, Tonali PA, Rothwell JC (2002) Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clin Neurophysiol 113:114–119CrossRefPubMedGoogle Scholar
  8. 8.
    Epstein CM, Lah JJ, Meador K, Weissman JD, Gaitan LE, Dihenia B (1996) Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 47:1590–1593CrossRefPubMedGoogle Scholar
  9. 9.
    Fernandez Coello A, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H (2013) Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg 119:1380–1394CrossRefPubMedGoogle Scholar
  10. 10.
    Frey D, Schilt S, Strack V, Zdunczyk A, Rosler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology 16:1365–1372CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T (2012) A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. NeuroImage 62:1600–1609CrossRefPubMedGoogle Scholar
  12. 12.
    Hauck T, Tanigawa N, Probst M, Wohlschlaeger A, Ille S, Sollmann N, Maurer S, Zimmer C, Ringel F, Meyer B, Krieg SM (2015) Stimulation frequency determines the distribution of language positive cortical regions during navigated transcranial magnetic brain stimulation. BMC Neurosci 16:5CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hauck T, Tanigawa N, Probst M, Wohlschlaeger A, Ille S, Sollmann N, Maurer S, Zimmer C, Ringel F, Meyer B, Krieg SM (2015) Task type affects location of language-positive cortical regions by repetitive navigated transcranial magnetic stimulation mapping. PLoS One 10:e0125298CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hernandez-Pavon JC, Makela N, Lehtinen H, Lioumis P, Makela JP (2014) Effects of navigated TMS on object and action naming. Front Hum Neurosci 8:660CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, Berger MS (2015) Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg 123:325–339CrossRefPubMedGoogle Scholar
  16. 16.
    Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—a new tool for functional imaging of the brain. Crit RevBiomedEng 27:241–284Google Scholar
  17. 17.
    Krieg SM, Buchmann NH, Gempt J, Shiban E, Meyer B, Ringel F (2012) Diffusion tensor imaging fiber tracking using navigated brain stimulation—a feasibility study. Acta Neurochir 154:555–563CrossRefPubMedGoogle Scholar
  18. 18.
    Krieg SM, Picht T, Sollmann N, Bährend I, Ringel F, Nagarajan SS, Meyer B, Tarapore PE (2016) Resection of motor eloquent metastases aided by preoperative nTMS-based motor maps—comparison of two observational cohorts. Frontiers in Oncology 6:261Google Scholar
  19. 19.
    Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, Shiban E, Meyer B, Ringel F (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-Oncology 16:1274–1282CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001CrossRefPubMedGoogle Scholar
  21. 21.
    Krieg SM, Tarapore PE, Picht T, Tanigawa N, Houde J, Sollmann N, Meyer B, Vajkoczy P, Berger MS, Ringel F, Nagarajan S (2014) Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. NeuroImage 100:219–236CrossRefPubMedGoogle Scholar
  22. 22.
    Lioumis P, Zhdanov A, Makela N, Lehtinen H, Wilenius J, Neuvonen T, Hannula H, Deletis V, Picht T, Makela JP (2012) A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 204:349–354CrossRefPubMedGoogle Scholar
  23. 23.
    Makela T, Vitikainen AM, Laakso A, Makela JP (2015) Integrating nTMS data into a radiology picture archiving system. J Digit Imaging 28:428–432CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Negwer C, Sollmann N, Ille S, Hauck T, Maurer S, Kirschke JS, Ringel F, Meyer B, Krieg SM (2016) Language pathway tracking: comparing nTMS-based DTI fiber tracking with a cubic ROIs-based protocol. J Neurosurg :1–9Google Scholar
  25. 25.
    Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41:697–702CrossRefPubMedGoogle Scholar
  26. 26.
    Picht T, Frey D, Thieme S, Kliesch S, Vajkoczy P (2016) Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study. J Neuro-Oncol 126:535–543CrossRefGoogle Scholar
  27. 27.
    Picht T, Krieg SM, Sollmann N, Rosler J, Niraula B, Neuvonen T, Savolainen P, Lioumis P, Makela JP, Deletis V, Meyer B, Vajkoczy P, Ringel F (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72:808–819CrossRefPubMedGoogle Scholar
  28. 28.
    Picht T, Mularski S, Kuehn B, Vajkoczy P, Kombos T, Suess O (2009) Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery 65:93–98CrossRefPubMedGoogle Scholar
  29. 29.
    Raffin E, Pellegrino G, Di Lazzaro V, Thielscher A, Siebner HR (2015) Bringing transcranial mapping into shape: sulcus-aligned mapping captures motor somatotopy in human primary motor hand area. NeuroImage 120:164–175CrossRefPubMedGoogle Scholar
  30. 30.
    Rogic M, Deletis V, Fernandez-Conejero I (2014) Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol. J Neurosurg 120:1033–1041CrossRefPubMedGoogle Scholar
  31. 31.
    Rosenstock T, Grittner U, Acker G, Schwarzer V, Kulchytska N, Vajkoczy P, Picht T (2016) Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data. J Neurosurg :1–11Google Scholar
  32. 32.
    Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92CrossRefPubMedGoogle Scholar
  33. 33.
    Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMedGoogle Scholar
  34. 34.
    Ruohonen J, Ilmoniemi RJ (1999) Modeling of the stimulating field generation in TMS. Electroencephalogr Clin Neurophysiol Suppl 51:30–40PubMedGoogle Scholar
  35. 35.
    Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. NeurophysiolClin 40:7–17Google Scholar
  36. 36.
    Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A (2013) The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg 118:287–296CrossRefPubMedGoogle Scholar
  37. 37.
    Soffietti R, Baumert BG, Bello L, von Deimling A, Duffau H, Frenay M, Grisold W, Grant R, Graus F, Hoang-Xuan K, Klein M, Melin B, Rees J, Siegal T, Smits A, Stupp R, Wick W (2010) Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur J Neurol 17:1124–1133CrossRefPubMedGoogle Scholar
  38. 38.
    Sollmann N, Ille S, Hauck T, Maurer S, Negwer C, Zimmer C, Ringel F, Meyer B, Krieg SM (2015) The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients. BMC Cancer 15:261CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sollmann N, Ille S, Negwer C, Boeckh-Behrens T, Ringel F, Meyer B, Krieg SM (2016) Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav. doi: 10.1007/s11682-11016-19574-x Google Scholar
  40. 40.
    Sollmann N, Negwer C, Ille S, Maurer S, Hauck T, Kirschke JS, Ringel F, Meyer B, Krieg SM (2016) Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. J Neurosci Methods 267:45–54CrossRefPubMedGoogle Scholar
  41. 41.
    Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, Nagarajan SS (2013) Language mapping with navigated repetitive TMS: proof of technique and validation. NeuroImage 82:260–272CrossRefPubMedGoogle Scholar
  42. 42.
    Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, Berger MS, Nagarajan SS, Krieg SM (2016) Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol 127:1895–1900CrossRefPubMedGoogle Scholar
  43. 43.
    Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, Nagarajan SS, Krieg SM (2016) Safety and tolerability of navigated TMS in healthy volunteers. Clin Neurophysiol 127:1916–1918CrossRefPubMedGoogle Scholar
  44. 44.
    Vigliocco G, Vinson DP, Druks J, Barber H, Cappa SF (2011) Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neurosci Biobehav Rev 35:407–426CrossRefPubMedGoogle Scholar
  45. 45.
    Vitikainen AM, Makela E, Lioumis P, Jousmaki V, Makela JP (2015) Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation. J Neurosci Methods 253:70–77CrossRefPubMedGoogle Scholar
  46. 46.
    Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2013) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. NeuroImage 66:531–542CrossRefPubMedGoogle Scholar
  47. 47.
    Weiss C, Tursunova I, Neuschmelting V, Lockau H, Nettekoven C, Oros-Peusquens AM, Stoffels G, Rehme AK, Faymonville AM, Shah NJ, Langen KJ, Goldbrunner R, Grefkes C (2015) Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. Neuroimage Clin 7:424–437CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Sandro M. Krieg
    • 1
  • Pantelis Lioumis
    • 2
  • Jyrki P. Mäkelä
    • 2
  • Juha Wilenius
    • 3
  • Jari Karhu
    • 4
  • Henri Hannula
    • 4
    • 5
  • Petri Savolainen
    • 4
  • Carolin Weiss Lucas
    • 6
  • Kathleen Seidel
    • 7
  • Aki Laakso
    • 8
  • Mominul Islam
    • 9
  • Selja Vaalto
    • 3
  • Henri Lehtinen
    • 10
  • Anne-Mari Vitikainen
    • 2
  • Phiroz E. Tarapore
    • 11
  • Thomas Picht
    • 12
  1. 1.Department of Neurosurgery, Klinikum rechts der IsarMunichGermany
  2. 2.BioMag Laboratory, HUS Medical Imaging CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  3. 3.Department of Clinical Neurophysiology, HUS Medical Imaging CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  4. 4.Nexstim PlcHelsinkiFinland
  5. 5.Department of Biomedical Engineering and Computational ScienceAalto UniversityEspooFinland
  6. 6.Center of NeurosurgeryUniversity Hospital CologneCologneGermany
  7. 7.Department of Neurosurgery InselspitalBern University Hospital University of BerneBerneSwitzerland
  8. 8.Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, NeurosurgeryUniversity of HelsinkiHelsinkiFinland
  9. 9.Department of Clinical Neurophysiology (R2:01)Karolinska University HospitalSolnaSweden
  10. 10.Epilepsy Unit, Department of Pediatric NeurologyHelsinki University Central HospitalHelsinkiFinland
  11. 11.Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoUSA
  12. 12.Department of NeurosurgeryCharité–Universitätsmedizin BerlinBerlinGermany

Personalised recommendations