Acta Neurochirurgica

, Volume 157, Issue 11, pp 1975–1981 | Cite as

Training for brain tumour resection: a realistic model with easy accessibility

  • Marcel A. Kamp
  • Johannes Knipps
  • Hans-Jakob Steiger
  • Marion Rapp
  • Jan F. Cornelius
  • Stefanie Folke-Sabel
  • Michael Sabel
Technical Note - Neurosurgery Training
  • 264 Downloads

Abstract

Background

Resection of intrinsic and extrinsic brain tumours requires an understanding of sulcal and gyral anatomy, familiarity with tissue consistency and tissue manipulation. As yet, these skills are acquired by observation and supervised manipulation during surgery, thus accepting a potential learning curve at the expense of the patient in a live surgical situation. A brain tumour model could ensure optimised manual skills and understanding of surgical anatomy acquired in an elective and relaxed teaching situation. We report and evaluate a brain tumour model, regarding availability, realistic representation of sulcal and gyral anatomy and tissue consistency.

Method

Freshly prepared agar-agar solution with different concentrations was added with highlighter ink and injected into fresh sheep brains.

Results

Hardened agar-agar solution formed masses comparable to malignant brain tumours. Variation of the agar-agar concentration influenced diffusion of agar-agar solution in the adjacent brain tissue. Higher concentrated agar-agar solutions formed sharply delimitated masses mimicking cerebral metastases and lower concentrated agar-agar solutions tended to diffuse into the adjacent cerebral tissue. Adding highlighter ink to the agar-agar solution produced fluorescence after blue light excitation comparable to the 5-ALA induced fluorescence of malignant glioma.

Conclusions

The described in vitro sheep brain tumour model is simple and realistic, available practically everywhere and cheap. Therefore, it could be useful for young neurosurgical residents to acquire basic neuro-oncological skills, experiencing properties of the cerebral brain texture and its haptic perception and to learn handling of neurosurgical equipment.

Keywords

Metastases Glioma Brain tumour Resident training Skill 

References

  1. 1.
    Alotaibi FE, AlZhrani GA, Mullah MA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, Del Maestro RF (2015) Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery 11(Suppl 2):89–98, discussion 98PubMedGoogle Scholar
  2. 2.
    Alotaibi FE, AlZhrani GA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, Del Maestro RF (2015) Neurosurgical assessment of metrics including judgment and dexterity using the virtual reality simulator NeuroTouch (NAJD Metrics). Surg Innov. doi:10.1177/1553350615579729Google Scholar
  3. 3.
    Azarnoush H, Alzhrani G, Winkler-Schwartz A, Alotaibi F, Gelinas-Phaneuf N, Pazos V, Choudhury N, Fares J, DiRaddo R, Del Maestro RF (2015) Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection. Int J Comput Assist Radiol Surg 10:603–618CrossRefPubMedGoogle Scholar
  4. 4.
    Gelinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, Pazos V, Debergue P, DiRaddo R, Del Maestro RF (2014) Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J Comput Assist Radiol Surg 9:1–9CrossRefPubMedGoogle Scholar
  5. 5.
    Gurusamy KS, Aggarwal R, Palanivelu L, Davidson BR (2009) Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev (1):CD006575. doi:10.1002/14651858.CD006575.pub2Google Scholar
  6. 6.
    Kamp MA, Dibue M, Niemann L, Reichelt DC, Felsberg J, Steiger HJ, Szelenyi A, Rapp M, Sabel M (2012) Proof of principle: supramarginal resection of cerebral metastases in eloquent brain areas. Acta Neurochir (Wien) 154:1981–1986CrossRefGoogle Scholar
  7. 7.
    Kamp MA, Dibue M, Santacroce A, Zella SM, Niemann L, Steiger HJ, Rapp M, Sabel M (2013) The tumour is not enough or is it? Problems and new concepts in the surgery of cerebral metastases. Ecancermedicalscience 7:306PubMedCentralPubMedGoogle Scholar
  8. 8.
    Kamp MA, Rapp M, Slotty PJ, Turowski B, Sadat H, Smuga M, Dibue-Adjei M, Steiger HJ, Szelenyi A, Sabel M (2015) Incidence of local in-brain progression after supramarginal resection of cerebral metastases. Acta Neurochir (Wien) 157:905–911CrossRefGoogle Scholar
  9. 9.
    Kim A, Khurana M, Moriyama Y, Wilson BC (2010) Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. J Biomed Opt 15:067006PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Regelsberger J, Eicker S, Siasios I, Hanggi D, Kirsch M, Horn P, Winkler P, Signoretti S, Fountas K, Dufour H, Barcia JA, Sakowitz O, Westermaier T, Sabel M, Heese O (2015) In vivo porcine training model for cranial neurosurgery. Neurosurg Rev 38:157–163CrossRefPubMedGoogle Scholar
  11. 11.
    Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003CrossRefPubMedGoogle Scholar
  12. 12.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Marcel A. Kamp
    • 1
  • Johannes Knipps
    • 1
  • Hans-Jakob Steiger
    • 1
  • Marion Rapp
    • 1
  • Jan F. Cornelius
    • 1
  • Stefanie Folke-Sabel
    • 2
  • Michael Sabel
    • 1
  1. 1.Department of Neurosurgery, Medical FacultyHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Stem Cell Network North Rhine-WestphaliaDuesseldorfGermany

Personalised recommendations