Acta Neurochirurgica

, Volume 157, Issue 7, pp 1147–1154 | Cite as

Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope

  • Shahram Eivazi
  • Hoorieh Afkari
  • Roman Bednarik
  • Ville Leinonen
  • Markku Tukiainen
  • Juha E. Jääskeläinen
Experimental Research - NeurosurgeryTraining

Abstract

Background

Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation.

Method

This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons’ interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope.

Results

The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10 %. Surgeons, we observed, avoid interaction with the microscope’s controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures.

Conclusions

The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

Keywords

Medical practice Microscope use in the OR Interruption Interaction with microscope Micro-neurosurgery 

References

  1. 1.
    Wilson CB (1970) Microsurgery applied to neurosurgery. JAMA-J Am Med Assoc 213:1346–1346CrossRefGoogle Scholar
  2. 2.
    Sugar O (1976) Microneurosurgery. JAMA-J Am Med Assoc 235:2541–2541CrossRefGoogle Scholar
  3. 3.
    Yasargil MG, Curcic M, Abernathey CD (1995) Microneurosurgery of CNS tumors. Thieme, New YorkGoogle Scholar
  4. 4.
    Kriss TC, Kriss VM (1998) History of the operating microscope: from magnifying glass to microneurosurgery. Neurosurgery 42(4):899–907PubMedCrossRefGoogle Scholar
  5. 5.
    Ramamurti R, Sridhar K, Vasudevan M (2005) Textbooks of operative neurosurgery. BI Publications Pvt Ltd, New DelhiGoogle Scholar
  6. 6.
    Uluç K, Kujoth GC, Baskaya MK (2009) Operating microscopes: past, present, and future. Neurosurg Focus 27:E4PubMedCrossRefGoogle Scholar
  7. 7.
    Hernesniemi J, Niemelä M, Karatas A, Kivipelto L, Ishii K, Rinne J, Ronkainen A, Koivisto T, Kivisaari R, Shen H, Lehecka M, Frösen J, Piippo A, Jääskeläinen JE (2005) Some collected principles of microneurosurgery: simple and fast, while preserving normal anatomy: a review. Surg Neurol 64:195–200PubMedCrossRefGoogle Scholar
  8. 8.
    Hindmarsh J, Pilnick A (2002) The tacit order of teamwork: collaboration and embodied conduct in anesthesia. Sociol Q 43:139–164CrossRefGoogle Scholar
  9. 9.
    Heinemann GD, Zeiss AM (2002) Team performance in health care: assessment and development. Springer, New YorkCrossRefGoogle Scholar
  10. 10.
    Lingard L, Reznick R, Espin S, Regehr G, DeVito I (2002) Team communications in the operating room: talk patterns, sites of tension, and implications for novices. Acad Med 77:232–237PubMedCrossRefGoogle Scholar
  11. 11.
    Coiera E (2000) When conversation is better than computation. J Am Med Inform Assoc 7:277–286PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Elprama SA, Kilpi K, Duysburgh P, Jacobs A, Vermeulen L, Van Looy J (2013) Identifying barriers in telesurgery by studying current team practices in robot-assisted surgery. In PervasiveHealth conference. IEEE 224–231Google Scholar
  13. 13.
    Mentis HM, Taylor AS (2013) Imaging the body: embodied vision in minimally invasive surgery. In Proc CHI ’13 SIGCHI Conference. ACM 1479–1488Google Scholar
  14. 14.
    Dinka D, Nyce JM, Timpka T (2009) Situated cognition in clinical visualization: the role of transparency in gammaknife neurosurgery planning. Artif Intell Med 46:111–118PubMedCrossRefGoogle Scholar
  15. 15.
    Ash JS, Berg M, Coiera E (2004) Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. J Am Med Inform Assoc 11:104–112PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Afkari H, Eivazi S, Bednarik R, Mäkelä S (2014) The potentials for hands-free interaction in micro-neurosurgery. In Proc of NordiCHI’14. ACM 401–410Google Scholar
  17. 17.
    Nardi BA, Schwarz H, Kuchinsky A, Leichner R, Whittaker S, Sclabassi R (1993) Turning away from talking heads: the use of video-as-data in neurosurgery. In Proc. INTERACT’93 and CHI’93 conference. ACM 327–334Google Scholar
  18. 18.
    Eivazi S, Bednarik R, Tukiainen M, Fraunberg M, Leinonen V, Jääskeläinen JE (2012) Gaze behaviour of expert and novice microneurosurgeons differs during observations of tumor removal recordings. In Proc of ETRA’12. ACM 377–380Google Scholar
  19. 19.
    Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, Baek YM, Takahashi H, Harada K (2012) Master–slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot 9:180–189PubMedCrossRefGoogle Scholar
  20. 20.
    Beyer H, Holtzblatt K (1999) Contextual design. Interactions 6:32–42CrossRefGoogle Scholar
  21. 21.
    Lehecka M, Laakso A, Hernesniemi J, Çelik Ö (2011) Helsinki microneurosurgery basics and tricks . DruckereiHohl GmbH and Co, KG, GermanyGoogle Scholar
  22. 22.
    Hsiu-Ting C, Hsu M, Chao-Hsu T, Wei-Liang H, Tien-Hsiang W (2012) A three-dimensional stereoscopic monitor system in microscopic vascular anastomosis. Microsurgery 32:571–574CrossRefGoogle Scholar
  23. 23.
    Wieben O (2001) Image-guided surgery. In: Webster J (eds) Minimally Invasive Medical Technology, Series in Med Physics and Biomed Eng, pp. 152–175Google Scholar
  24. 24.
    Charlier J, Sourdille P, Behague M, Buquet C (1991) Eye-controlled microscope for surgical applications. Dev Ophthalmol 22:154–158PubMedGoogle Scholar
  25. 25.
    Hinckley K, Pausch R, Goble JC, Kassell NF (1994) Passive real-world interface props for neurosurgical visualization. In Proc of the SIGCHI conference, ACM, 452–458Google Scholar
  26. 26.
    Finke M, Schweikard A (2010) Motorization of a surgical microscope for intra-operative navigation and intuitive control. Int J Med Robot Comput Assist Surg 6(3):269–280CrossRefGoogle Scholar
  27. 27.
    Hillaire S, Lécuyer A, Cozot R, Casiez G (2008) Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In VR’08 Conference. IEEE 47–50Google Scholar
  28. 28.
    Duchowski A (2002) A breadth-first survey of eye-tracking applications. Behav Res Meth Instr C 34(4):455–470CrossRefGoogle Scholar
  29. 29.
    Jacob RJ, Karn KS (2003) Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. In: Hyona J, Radach R, Deubel H (eds) The mind’s eye: cognitive and applied aspects of eye movement research, pp 573–603Google Scholar
  30. 30.
    Ware C, Mikaelian HH (1987) An evaluation of an eye tracker as a device for computer input. In ACM SIGCHI Bull 17:183–188. ACMGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Shahram Eivazi
    • 1
  • Hoorieh Afkari
    • 1
  • Roman Bednarik
    • 1
  • Ville Leinonen
    • 2
  • Markku Tukiainen
    • 1
  • Juha E. Jääskeläinen
    • 2
  1. 1.School of ComputingUniversity of Eastern FinlandJoensuuFinland
  2. 2.Neurosurgery of KUH NeuroCenterKuopio University Hospital and Institute of Clinical Medicine, University of Eastern FinlandKuopioFinland

Personalised recommendations