Acta Neurochirurgica

, Volume 155, Issue 5, pp 891–900 | Cite as

Tuber cinereum proximity to critical major arteries: a morphometric imaging analysis relevant to endoscopic third ventriculostomy

  • Avril Horsburgh
  • Tomasz Matys
  • Ramez W. Kirollos
  • Tarik F. Massoud
Clinical Article - Neurosurgical Anatomy



Arterial bleeding in the interpeduncular fossa is a dreaded complication of endoscopic third ventriculostomy (ETV). When the “safe zone” of the tuber cinereum (TC) is fenestrated, the basilar artery tip (BT) or its branches may be encountered below the third ventriclular floor. Major arterial injuries might be avoided by careful preoperative planning. We aimed to establish previously unavailable normal magnetic resonance imaging (MRI) and MR angiographic (MRA) morphometry and configuration of the BT and posterior cerebral artery P1 segments relative to the TC.


We analyzed images of 82 patients with non-dilated ventricles (mean Evans’ index 0.26), and lying in a neutral head position (mean cervico-medullary angle 141°). We cross-referenced axial MRAs with sagittal MRIs to measure distances of BT and P1 segments from the TC, and to classify the location of the BT in the interpeduncular and suprasellar cisterns. We correlated the sagittal areas of these cisterns and patients’ ages with the TC-to-artery distances using regression analysis.


The BT, right P1 and left P1 segments were a mean 4.9 mm, 5.5 mm, and 5.7 mm respectively from the TC. Seventy-four percent of BTs were anterior to the mammillary bodies. These distances and locations did not correlate with age (mean 53 years) or size of basal cisterns.


The normal BT and P1 segments are anatomically close to the TC and potentially at risk during ETV in adults of all ages. The new morphometric data presented, along with cross-referencing of preoperative multiplanar images, could help reduce vascular complications during ETV.


Basilar artery Hemorrhage Morphometry Neuroendoscopy Tuber cinereum Third ventriculostomy 


  1. 1.
    Abtin K, Thompson BG, Walker ML (1998) Basilar artery perforation as a complication of endoscopic third ventriculostomy. Pediatr Neurosurg 28:35–41PubMedCrossRefGoogle Scholar
  2. 2.
    Amini A, Schmidt RH (2005) Endoscopic third ventriculostomy in a series of 36 adult patients. Neurosurg Focus 19:E9PubMedGoogle Scholar
  3. 3.
    Baykan N, Isbir O, Gerçek A, Dağçnar A, Ozek MM (2005) Ten years of experience with pediatric neuroendoscopic third ventriculostomy: features and perioperative complications of 210 cases. J Neurosurg Anesthesiol 17:33–37PubMedGoogle Scholar
  4. 4.
    Bilginer B, Oguz KK, Akalan N (2009) Endoscopic third ventriculostomy for malfunction in previously shunted infants. Childs Nerv Syst 25:683–688PubMedCrossRefGoogle Scholar
  5. 5.
    Bouras T, Sgouros S (2012) Complications of endoscopic third ventriculostomy. World Neurosurg. doi:10.1016/j.wneu.2012.02.014 [Epub ahead of print]
  6. 6.
    Brockmeyer D (2004) Techniques of endoscopic third ventriculostomy. Neurosurg Clin N Am 15:51–59PubMedCrossRefGoogle Scholar
  7. 7.
    Buxton N, Punt J (2000) Cerebral infarction after neuroendoscopic third ventriculostomy: case report. Neurosurgery 46:999–1001PubMedGoogle Scholar
  8. 8.
    Chernov MF, Kamikawa S, Yamane F, Ishihara S, Hori T (2005) Neurofiberscope-guided management of slit-ventricle syndrome due to shunt placement. J Neurosurg 102(3 Suppl):260–267PubMedGoogle Scholar
  9. 9.
    de Ribaupierre S, Rilliet B, Vernet O, Regli L, Villemure JG (2007) Third ventriculostomy vs ventriculoperitoneal shunt in pediatric obstructive hydrocephalus: results from a Swiss series and literature review. Childs Nerv Syst 23:527–533PubMedCrossRefGoogle Scholar
  10. 10.
    Fabiano AJ, Leonardo J, Grand W (2010) Posterior cerebral artery P1 segment at the stoma during endoscopic third ventriculostomy in adults. J Neurol Neurosurg Psychiatry 81:374–378PubMedCrossRefGoogle Scholar
  11. 11.
    Fushimi Y, Miki Y, Ueba T, Kanagaki M, Takahashi T, Yamamoto A, Haque TL, Konishi J, Takahashi JA, Hashimoto N, Konishi J (2003) Liliequist membrane: three-dimensional constructive interference in steady state MR imaging. Radiology 229:360–365PubMedCrossRefGoogle Scholar
  12. 12.
    Gangemi M, Maiuri F, Buonamassa S, Colella G, de Divitiis E (2004) Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus. Neurosurgery 55:129–134PubMedCrossRefGoogle Scholar
  13. 13.
    Garton HJ, Kestle JR, Cochrane DD, Steinbok P (2002) A cost-effectiveness analysis of endoscopic third ventriculostomy. Neurosurgery 51:69–77PubMedCrossRefGoogle Scholar
  14. 14.
    Hayashi N, Endo S, Hamada H, Shibata T, Fukuda O, Takaku A (1999) Role of preoperative midsagittal magnetic resonance imaging in endoscopic third ventriculostomy. Minim Invasive Neurosurg 42:79–82PubMedCrossRefGoogle Scholar
  15. 15.
    Hellwig D, Grotenhuis JA, Tirakotai W, Riegel T, Schulte DM, Bauer BL, Bertalanffy H (2005) Endoscopic third ventriculostomy for obstructive hydrocephalus. Neurosurg Rev 28:1–34PubMedCrossRefGoogle Scholar
  16. 16.
    Hopf NJ, Grunert P, Fries G, Resch KD, Perneczky A (1999) Endoscopic third ventriculostomy: outcome analysis of 100 consecutive procedures. Neurosurgery 45:957–959CrossRefGoogle Scholar
  17. 17.
    Horowitz M, Albright AL, Jungreis C, Levy EI, Stevenson K (2001) Endovascular management of a basilar artery false aneurysm secondary to endoscopic third ventriculostomy: case report. Neurosurgery 49:1461–1464PubMedCrossRefGoogle Scholar
  18. 18.
    Kim SK, Wang KC, Cho BK (2000) Surgical outcome of pediatric hydrocephalus treated by endoscopic III ventriculostomy: prognostic factors and interpretation of postoperative neuroimaging. Childs Nerv Syst 16:161–168PubMedCrossRefGoogle Scholar
  19. 19.
    Lang J (1992) Topographic anatomy of preformed intracranial spaces. Acta Neurochir Suppl (Wien) 54:1–10CrossRefGoogle Scholar
  20. 20.
    Lawlor DA, Stone T (2011) Public health and data protection: an inevitable collision or potential for a meeting of minds? Int J Epidemiol 30:1221–1225CrossRefGoogle Scholar
  21. 21.
    McLaughlin MR, Wahlig JB, Kaufmann AM, Albright AL (1997) Traumatic basilar aneurysm after endoscopic third ventriculostomy: case report. Neurosurgery 41:1400–1403PubMedCrossRefGoogle Scholar
  22. 22.
    Morota N, Watabe T, Inukai T, Hongo K, Nakagawa H (2000) Anatomical variants in the floor of the third ventricle; implications for endoscopic third ventriculostomy. J Neurol Neurosurg Psychiatry 69:531–534PubMedCrossRefGoogle Scholar
  23. 23.
    Ogiwara H, Dipatri AJ Jr, Alden TD, Bowman RM, Tomita T (2010) Endoscopic third ventriculostomy for obstructive hydrocephalus in children younger than 6 months of age. Childs Nerv Syst 26:343–347PubMedCrossRefGoogle Scholar
  24. 24.
    Oka K, Go Y, Kin Y, Tomonaga M (1993) An observation of the third ventricle under flexible fiberoptic ventriculoscope: normal structure. Surg Neurol 40:273–277PubMedCrossRefGoogle Scholar
  25. 25.
    Peltier J, Fichten A, Page C, Havet E, Foulon P, Mertl P, Le Gars D, Laude M (2008) Endoscopic anatomy of the terminal portion of the basilar artery and its distal perforating branches. Morphologie 92:31–36PubMedCrossRefGoogle Scholar
  26. 26.
    Ray P, Jallo GI, Kim RY, Kim BS, Wilson S, Kothbauer K, Abbott R (2005) Endoscopic third ventriculostomy for tumor-related hydrocephalus in a pediatric population. Neurosurg Focus 19:E8PubMedCrossRefGoogle Scholar
  27. 27.
    Reijnierse M, Breedveld FC, Kroon HM, Hansen B, Pope TL, Bloem JL (2000) Are magnetic resonance flexion views useful in evaluating the cervical spine of patients with rheumatoid arthritis? Skeletal Radiol 29:85–89PubMedCrossRefGoogle Scholar
  28. 28.
    Romero Adel C, Aguiar PH, Borchartt TB, Conci A (2011) Quantitative ventricular neuroendoscopy performed on the third ventriculostomy: anatomic study. Neurosurgery 68(2 Suppl Operative):347–354PubMedGoogle Scholar
  29. 29.
    Ruggiero C, Cinalli G, Spennato P, Aliberti F, Cianciulli E, Trischitta V, Maggi G (2004) Endoscopic third ventriculostomy in the treatment of hydrocephalus in posterior fossa tumors in children. Childs Nerv Syst 20:828–833PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt RH (1999) Use of a microvascular Doppler probe to avoid basilar artery injury during endoscopic third ventriculostomy. Technical note. J Neurosurg 90:156–159PubMedCrossRefGoogle Scholar
  31. 31.
    Schroeder HW, Warzok RW, Assaf JA, Gaab MR (1999) Fatal subarachnoid hemorrhage after endoscopic third ventriculostomy. J Neurosurg 90:153–155PubMedCrossRefGoogle Scholar
  32. 32.
    Schroter S, Plowman R, Hutchings A, Gonzalez A (2006) Reporting ethics committee approval and patient consent by study design in five general medical journals. J Med Ethics 32:718–723PubMedCrossRefGoogle Scholar
  33. 33.
    van Beijnum J, Hanlo PW, Fischer K, Majidpour MM, Kortekaas MF, Verdaasdonk RM, Vandertop WP (2008) Laser-assisted endoscopic third ventriculostomy: long-term results in a series of 202 patients. Neurosurgery 62:437–443PubMedCrossRefGoogle Scholar
  34. 34.
    Vandertop PW (1998) Traumatic basilar aneurysm after third ventriculostomy: case report. Neurosurgery 43:647–648PubMedCrossRefGoogle Scholar
  35. 35.
    Vinas FC, Dujovny N, Dujovny M (1996) Microanatomical basis for the third ventriculostomy. Minim Invasive Neurosurg 39:116–121PubMedCrossRefGoogle Scholar
  36. 36.
    Yadav YR, Shenoy R, Mukerji G, Parihar V (2010) Water jet dissection technique for endoscopic third ventriculostomy minimises the risk of bleeding and neurological complications in obstructive hydrocephalus with a thick and opaque third ventricle floor. Minim Invasive Neurosurg 53:155–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Avril Horsburgh
    • 1
  • Tomasz Matys
    • 1
  • Ramez W. Kirollos
    • 2
  • Tarik F. Massoud
    • 1
    • 3
    • 4
  1. 1.Section of NeuroradiologyAddenbrooke’s HospitalCambridgeUK
  2. 2.Department of NeurosurgeryAddenbrooke’s HospitalCambridgeUK
  3. 3.Department of RadiologyUniversity of CambridgeCambridgeUK
  4. 4.Department of Radiology, Section of Neuroradiology, Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford (MIPS)Stanford University School of Medicine and Medical Center, The James H. Clark Center, E153StanfordUSA

Personalised recommendations