Acta Neurochirurgica

, Volume 154, Issue 1, pp 21–26 | Cite as

Simple Measurement of Aneurysm Residual after Treatment: the SMART scale for evaluation of intracranial aneurysms treated with flow diverters

  • Iris Quasar GrunwaldEmail author
  • M. Kamran
  • R. A. Corkill
  • A. L. Kühn
  • I. S. Choi
  • S. Turnbull
  • D. Dobson
  • K. Fassbender
  • D. Watson
  • M. J. Gounis
Experimental research



Primary endovascular reconstruction with flow diversion represents a fundamental paradigm shift in the technique of endovascular aneurysm treatment. Unlike coil embolization, often there remains residual post-procedural filling within the aneurysm with flow diverters, the curative reconstruction presumably occurring over a period of weeks. Thus, conventional grading scales for post-procedural aneurysm occlusion and recanalization are inadequate. The aim of this paper is to propose a new angiographic grading scale that addresses this fundamentally new treatment option.


A five-point grading scale describes the location of residual flow within the aneurysm in the venous phase [grade 1: patent aneurysm with diffuse inflow; grade 2: residual filling of the aneurysm dome (saccular) or wall (fusiform); grade 3: only residual neck (saccular) or only intra-aneurysmal filling with former boundaries covered (fusiform); grade 4: complete occlusion].


Grade 0 represents any aneurysm, regardless of occlusion rate with early phase, coherent inflow jet. Intra-aneurysmal flow stagnation is categorized into: (a) none, (b) capillary phase, and (c) venous phase. Prevailing parent vessel hemodynamics with in-stent stenosis (ISS) are divided into none (ISS0), mild (ISS1), moderate (ISS2), severe (ISS3), and total (ISS4) occlusion. The proposed grading scales allow assessment of the hemodynamic consequences of stent placement on endosaccular in-flow, stasis, and location of stasis as well as parent vessel hemodynamics.


Further studies need to show the applicability and possible predictive value of this new grading scale on the efficacy of the stent in promoting intra-aneurysmal flow stagnation, thus creating the potential to harmonize the results of future papers. This may help to optimize treatment and future device design.


Grading scale Flow diverter Aneurysm Endovascular Stent 


Conflicts of interest



  1. 1.
    Augsburger L, Farhat M, Reymond P, Fonck E, Kulcsar Z, Stergiopulos N, Rüfenacht DA (2009) Effect of flow diverter porosity on intraaneurysmal blood flow. Klin Neuroradiol 19:204–214PubMedCrossRefGoogle Scholar
  2. 2.
    Bendok BR, Parkinson RJ, Hage ZA, Adel JG, Gounis MJ (2007) The effect of vascular reconstruction device-assisted coiling on packing density, effective neck coverage, and angiographic outcome: an in vitro study. Neurosurgery 61:835–840, discussion 840–841PubMedCrossRefGoogle Scholar
  3. 3.
    Drake MD (2008) The endograft pipeline. J Vasc Interv Radiol 19:68–70Google Scholar
  4. 4.
    Fiorella D, Hsu D, Woo HH, Tarr RW, Nelson PK (2010) Very late thrombosis of a pipeline embolization device construct: case report. Neurosurgery 67(3 Suppl Operative):E313–E314, discussion E314Google Scholar
  5. 5.
    Fiorella D, Kelly ME, Albuquerque FC, Nelson PK (2009) Curative reconstruction of a giant midbasilar trunk aneurysm with the pipeline embolization device. Neurosurgery 64:212–217, discussion 217PubMedCrossRefGoogle Scholar
  6. 6.
    Fiorella D, Woo HH, Albuquerque FC, Nelson PK (2008) Definitive reconstruction of circumferential, fusiform intracranial aneurysms with the pipeline embolization device. Neurosurgery 62:1115–1120, discussion 1120–1121PubMedCrossRefGoogle Scholar
  7. 7.
    Grunwald IQ, Papanagiotou P, Struffert T, Politi M, Krick C, Gül G, Reith W (2007) Recanalization after endovascular treatment of intracerebral aneurysms. Neuroradiology 49:41–47PubMedCrossRefGoogle Scholar
  8. 8.
    Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ (2007) A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 38:2346–2352PubMedCrossRefGoogle Scholar
  9. 9.
    Kühn AL, Roth C, Romeike B, Grunwald IQ (2009) Treatment of elastase-induced intracranial aneurysms in New Zealand white rabbits by use of a novel neurovascular embolization stent device. Neuroradiology. doi: 10.1007/s00234-009-0605-9
  10. 10.
    Kulcsár Z, Wetzel SG, Augsburger L, Gruber A, Wanke I, Rüfenacht DA (2010) effect of flow diversion treatment on very small ruptured aneurysms. Neurosurgery 67:789–793PubMedCrossRefGoogle Scholar
  11. 11.
    Lieber BB, Gounis MJ (2002) The physics of endoluminal stenting in the treatment of cerebrovascular aneurysms. Neurol Res Suppl 24(1):33–42CrossRefGoogle Scholar
  12. 12.
    Lylyk P, Miranda C, Ceratto R, Ferrario A, Scrivano E, Luna HR, Berez AL, Tran Q, Nelson PK, Fiorella D (2009) Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device. The Buenos Aires experience. Neurosurgery 64:632–642, discussion 642–643PubMedCrossRefGoogle Scholar
  13. 13.
    O’Kelley CJ, Krings T, Fiorella D, Marotta TR (2010) A novel grading scale for the angiographic assessment of intracranial aneurysms treated using Flow Diverting Stents. Interv Neuroradiol 16:133–137Google Scholar
  14. 14.
    Quasar Grunwald I, Molyneux A, Kühn AL, Watson D, Byrne JV (2010) Influence of coil geometry on intra-aneurysmal packing density: evaluation of a new primary wind technology. Vasc Endovasc Surg 44:289–293CrossRefGoogle Scholar
  15. 15.
    Raymond J, Guilbert F, Weill A, Georganos SA, Juravsky L, Lambert A, Lamoureux J, Chagnon M, Roy D et al (2003) Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 34:1398–1403PubMedCrossRefGoogle Scholar
  16. 16.
    Sadasivan C, Cesar L, Seong J, Wakhloo AK, Lieber BB (2009) Treatment of rabbit elastase-induced aneurysm models by flow diverters: development of quantifiable indexes of device performance using digital subtraction angiography. IEEE Trans Med Imaging 28:1117–1125PubMedCrossRefGoogle Scholar
  17. 17.
    Sadasivan C, Lieber BB, Gounis MJ, Lopes DK, Hopkins LN (2002) Angiographic quantification of contrast medium washout from cerebral aneurysms after stent placement. AJNR Am J Neuroradiol 23:1214–1221PubMedGoogle Scholar
  18. 18.
    Szikora I, Berentei Z, Kulcsar Z, Marosfoi M, Vajda ZS, Lee W, Berez A, Nelson PK (2010) Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the budapest experience with the pipeline embolization device. AJNR Am J Neuroradiol 31:1139–1147PubMedCrossRefGoogle Scholar
  19. 19.
    Trager AL, Sadasivan C, Seong J, Lieber BB (2009) Correlation between angiographic and particle image velocimetry quantifications of flow diverters in an in vitro model of elastase-induced rabbit aneurysms. J Biomech Eng 131:034506PubMedCrossRefGoogle Scholar
  20. 20.
    Turowski B, Macht S, Kulcsár Z, Hänggi D, Stummer W (2011) Early fatal hemorrhage after endovascular cerebral aneurysm treatment with a flow diverter (SILK-Stent): do we need to rethink our concepts? Neuroradiology 53:37–41PubMedCrossRefGoogle Scholar
  21. 21.
    Villa-Uriol MC, Larrabide I, Pozo JM, Kim M, Camara O, De Craene M, Zhang C, Geers AJ, Morales H, Bogunović H, Cardenes R, Frangi AF (2010) Toward integrated management of cerebral aneurysms. Philos Transact A Math Phys Eng Sci 368:2961–2982PubMedGoogle Scholar
  22. 22.
    Wakhloo AK, Gounis MJ, Sandhu JS, Akkawi N, Schenck AE, Linfante I (2007) Complex-shaped platinum coils for brain aneurysms: higher packing density, improved biomechanical stability, and midterm angiographic outcome. AJNR Am J Neuroradiol 28:1395–1400PubMedCrossRefGoogle Scholar
  23. 23.
    Yang PF, Liu JM, Huang QH, Zhao WY, Hong B, Xu Y, Zhao R (2010) Preliminary experience and short-term follow-up results of treatment of wide-necked or fusiform cerebral aneurysms with a self-expanding, closed-cell, retractable stent. J Clin Neurosci 17:837–841PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Iris Quasar Grunwald
    • 1
    Email author
  • M. Kamran
    • 2
  • R. A. Corkill
    • 3
    • 6
  • A. L. Kühn
    • 4
  • I. S. Choi
    • 5
  • S. Turnbull
    • 6
  • D. Dobson
    • 6
  • K. Fassbender
    • 7
  • D. Watson
    • 8
  • M. J. Gounis
    • 4
  1. 1.Acute Vascular Imaging Centre (AVIC), NIHR Oxford Biomedical Research CentreUniversity of Oxford and Oxford Radcliffe Hospital NHS Trust, John Radcliffe HospitalOxfordUK
  2. 2.Oxford Neurovascular and Neuroradiology Research Unit, Level 6 West WingJohn Radcliffe HospitalOxfordUK
  3. 3.Department for Neuroradiology, West WingJohn Radcliffe HospitalOxfordUK
  4. 4.New England Center for Stroke Research, Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Lahey Clinic Medical CenterSchool of Medicine, Tufts UniversityBurlingtonUSA
  6. 6.Nuffield Department of SurgeryUniversity of OxfordOxfordUK
  7. 7.Department of NeurologySaarland UniversityHomburgGermany
  8. 8.Consultant Biomedical EngineerSan JoséUSA

Personalised recommendations