Acta Neurochirurgica

, Volume 153, Issue 12, pp 2293–2306

Expanding applications of deep brain stimulation: a potential therapeutic role in obesity and addiction management

  • Casey H. Halpern
  • Napoleon Torres
  • Howard I. Hurtig
  • John A. Wolf
  • James Stephen
  • Michael Y. Oh
  • Noel N. Williams
  • Marc A. Dichter
  • Jurg L. Jaggi
  • Arthur L. Caplan
  • Kyle M. Kampman
  • Thomas A. Wadden
  • Donald M. Whiting
  • Gordon H. Baltuch
Review Article



The indications for deep brain stimulation (DBS) are expanding, and the feasibility and efficacy of this surgical procedure in various neurologic and neuropsychiatric disorders continue to be tested. This review attempts to provide background and rationale for applying this therapeutic option to obesity and addiction. We review neural targets currently under clinical investigation for DBS—the hypothalamus and nucleus accumbens—in conditions such as cluster headache and obsessive-compulsive disorder. These brain regions have also been strongly implicated in obesity and addiction. These disorders are frequently refractory, with very high rates of weight regain or relapse, respectively, despite the best available treatments.


We performed a structured literature review of the animal studies of DBS, which revealed attenuation of food intake, increased metabolism, or decreased drug seeking. We also review the available radiologic evidence in humans, implicating the hypothalamus and nucleus in obesity and addiction.


The available evidence of the promise of DBS in these conditions combined with significant medical need, support pursuing pilot studies and clinical trials of DBS in order to decrease the risk of dietary and drug relapse.


Well-designed pilot studies and clinical trials enrolling carefully selected patients with obesity or addiction should be initiated.


Deep brain stimulation Obesity Binge eating Addiction Hypothalamus Nucleus accumbens 


  1. 1.
    Acquas E, Di Chiara G (1992) Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J Neurochem 58:1620–1625PubMedGoogle Scholar
  2. 2.
    Allison DB, Zannolli R, Narayan KM (1999) The direct health care costs of obesity in the United States. Am J Public Health 89:1194–1199PubMedGoogle Scholar
  3. 3.
    Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77:323–324PubMedGoogle Scholar
  4. 4.
    Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP (2005) Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 62:554–560PubMedGoogle Scholar
  5. 5.
    Andersson B (1951) The effect and localization of electrical stimulation of certain parts of the brain stem in sheep and goats. Acta Physiol Scand 23:8–23PubMedGoogle Scholar
  6. 6.
    Andy OJ, Jurko MF, Sias FR Jr (1963) Subthalamotomy in treatment of parkinsonian tremor. J Neurosurg 20:860–870PubMedGoogle Scholar
  7. 7.
    Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39PubMedGoogle Scholar
  8. 8.
    Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53:1253–1260PubMedGoogle Scholar
  9. 9.
    Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ (2006) Individual differences in reward drive predict neural responses to images of food. J Neurosci 26:5160–5166PubMedGoogle Scholar
  10. 10.
    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50:344–346PubMedGoogle Scholar
  11. 11.
    Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Pollak P, Berger F (2005) Therapeutic electrical stimulation of the central nervous system. C R Biol 328:177–186PubMedGoogle Scholar
  12. 12.
    Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105:149–157PubMedGoogle Scholar
  13. 13.
    Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20:189–287PubMedGoogle Scholar
  14. 14.
    Bingley T, Persson A (1978) EEG studies on patients with chronic obsessive-compulsive neurosis before and after psychosurgery (stereotaxic bilateral anterior capsulotomy). Electroencephalogr Clin Neurophysiol 44:691–696PubMedGoogle Scholar
  15. 15.
    Blendy JA, Maldonado R (1998) Genetic analysis of drug addiction: the role of cAMP response element binding protein. J Mol Med 76:104–110PubMedGoogle Scholar
  16. 16.
    Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, Diksic M, Benkelfat C (2007) Conditioned dopamine release in humans: a positron emission tomography [11 C]raclopride study with amphetamine. J Neurosci 27:3998–4003PubMedGoogle Scholar
  17. 17.
    Breiter HC, Rauch SL (1996) Functional MRI and the study of OCD: from symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. Neuroimage 4:S127–S138PubMedGoogle Scholar
  18. 18.
    Brown FD, Fessler RG, Rachlin JR, Mullan S (1984) Changes in food intake with electrical stimulation of the ventromedial hypothalamus in dogs. J Neurosurg 60:1253–1257PubMedGoogle Scholar
  19. 19.
    Caplan A (2008) Denying autonomy in order to create it: the paradox of forcing treatment upon addicts. Addiction 103:1919–1921PubMedGoogle Scholar
  20. 20.
    Carr KD (2011) Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: Binge eating and drug abuse. Physiol Behav 104:162–167PubMedGoogle Scholar
  21. 21.
    Carter A, Hall W (2011) Proposals to trial deep brain stimulation to treat addiction are premature. Addiction 106:235–237PubMedGoogle Scholar
  22. 22.
    Cox JE, Powley TL (1981) Intragastric pair feeding fails to prevent VMH obesity or hyperinsulinemia. Am J Physiol 240:E566–E572PubMedGoogle Scholar
  23. 23.
    Csigo K, Harsanyi A, Demeter G, Rajkai C, Nemeth A, Racsmany M (2010) Long-term follow-up of patients with obsessive-compulsive disorder treated by anterior capsulotomy: a neuropsychological study. J Affect Disord 126:198–205PubMedGoogle Scholar
  24. 24.
    Dackis CA, O’Brien CP (2001) Cocaine dependence: a disease of the brain’s reward centers. J Subst Abuse Treat 21:111–117PubMedGoogle Scholar
  25. 25.
    Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278PubMedGoogle Scholar
  26. 26.
    Dodes LM (1996) Compulsion and addiction. J Am Psychoanal Assoc 44:815–835PubMedGoogle Scholar
  27. 27.
    DSMMD, Diagnostic and Statistical Manual of Mental Disorders, 4th edn (2000) American Psychiatric Association, WashingtonGoogle Scholar
  28. 28.
    Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC (2007) Leptin regulates striatal regions and human eating behavior. Science 317:1355PubMedGoogle Scholar
  29. 29.
    Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA (2001) Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med 161:1581–1586PubMedGoogle Scholar
  30. 30.
    Fontaine D, Lazorthes Y, Mertens P, Blond S, Geraud G, Fabre N, Navez M, Lucas C, Dubois F, Gonfrier S, Paquis P, Lanteri-Minet M (2010) Safety and efficacy of deep brain stimulation in refractory cluster headache: a randomized placebo-controlled double-blind trial followed by a 1-year open extension. J Headache Pain 11:23–31PubMedGoogle Scholar
  31. 31.
    Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB (2003) Years of life lost due to obesity. JAMA 289:187–193PubMedGoogle Scholar
  32. 32.
    Frazer A, Morilak DA (2005) What should animal models of depression model? Neurosci Biobehav Rev 29:515–523PubMedGoogle Scholar
  33. 33.
    Friedman I, Dar R, Shilony E (2000) Compulsivity and obsessionality in opioid addiction. J Nerv Ment Dis 188:155–162PubMedGoogle Scholar
  34. 34.
    Friedman JM (2011) Leptin and the regulation of body weigh. Keio J Med 60:1–9PubMedGoogle Scholar
  35. 35.
    Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, Ravussin E, Reiman EM, Tataranni PA (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49:838–846PubMedGoogle Scholar
  36. 36.
    Gearhardt AN, Corbin WR, Brownell KD (2009) Preliminary validation of the Yale Food Addiction Scale. Appetite 52:430–436PubMedGoogle Scholar
  37. 37.
    Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD (2011) Neural correlates of food addiction. Arch Gen PsychiatryGoogle Scholar
  38. 38.
    Goldstein JM, Siegel J (1980) Suppression of attack behavior in cats by stimulation of ventral tegmental area and nucleus accumbens. Brain Res 183:181–192PubMedGoogle Scholar
  39. 39.
    Goodman WK, Foote KD, Greenberg BD, Ricciuti N, Bauer R, Ward H, Shapira NA, Wu SS, Hill CL, Rasmussen SA, Okun MS (2010) Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol Psychiatry 67:535–542PubMedGoogle Scholar
  40. 40.
    Gracia-Solanas JA, Elia M, Aguilella V, Ramirez JM, Martinez J, Bielsa MA, Martinez M (2011) Metabolic syndrome after bariatric surgery. Results depending on the technique performed. Obes Surg 21:179–185PubMedGoogle Scholar
  41. 41.
    Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359PubMedGoogle Scholar
  42. 42.
    Green E, Jacobson A, Haase L, Murphy C (2011) Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Res 1386:109–117PubMedGoogle Scholar
  43. 43.
    Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31:2384–2393PubMedGoogle Scholar
  44. 44.
    Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 15:1137–1140PubMedGoogle Scholar
  45. 45.
    Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Weber-Fahr W, Flor H, Mann K, Braus DF, Heinz A (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 175:296–302Google Scholar
  46. 46.
    Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, Yang Y (2010) Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 53:593–601PubMedGoogle Scholar
  47. 47.
    Gutman DA, Holtzheimer PE, Behrens TE, Johansen-Berg H, Mayberg HS (2009) A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry 65:276–282PubMedGoogle Scholar
  48. 48.
    Hall W, Carter A (2011) Science, safety and costs make deep brain stimulation for addiction a low priority: a reply to Vorspan et al. (2011) and Kuhn et al. (2011). Addiction 106:1537–1538Google Scholar
  49. 49.
    Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G (2007) Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord 13:1–16PubMedGoogle Scholar
  50. 50.
    Halpern C, Keating J, Wolf J, Rodemer W, Jaggi J, Baltuch G, Dichter M, Bale T (2011) Deep brain stimulation of the nucleus accumbens attenuates binge eating: preliminary evidence for a potential therapeutic role of neuromodulation in treatment-refractory obesity. Congress of Neurological Surgeons, Washington D.C.Google Scholar
  51. 51.
    Halpern CH, Gonzalez-Giraldo E, Aversano MW, Wolf JA, Juul H, Keating JG, Rodemer WC, Baltuch GH, Dichter MA, Bale TL (2011) Establishing a role for mouse models in deep brain stimulation: evidence from an obesity model. American Association of Neurological Surgeons, DenverGoogle Scholar
  52. 52.
    Hano J, Przewlocki R, Smialowska M, Chlapowska M, Rokosz-Pelc A (1978) The effect of electric stimulation of caudate nucleus and nucleus accumbens septi on serotonergic neurons in the rat brain. Pol J Pharmacol Pharm 30:475–481PubMedGoogle Scholar
  53. 53.
    Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789PubMedGoogle Scholar
  54. 54.
    Heinze HJ, Heldmann M, Voges J, Hinrichs H, Marco-Pallares J, Hopf JM, Muller UJ, Galazky I, Sturm V, Bogerts B, Munte TF (2009) Counteracting incentive sensitization in severe alcohol dependence using deep brain stimulation of the nucleus accumbens: clinical and basic science aspects. Front Hum Neurosci 3:22PubMedGoogle Scholar
  55. 55.
    Henderson MB, Green AI, Bradford PS, Chau DT, Roberts DW, Leiter JC (2010) Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus 29:E12PubMedGoogle Scholar
  56. 56.
    Herder C, Schneitler S, Rathmann W, Haastert B, Schneitler H, Winkler H, Bredahl R, Hahnloser E, Martin S (2007) Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab 92:4569–4574PubMedGoogle Scholar
  57. 57.
    Hetherington AW, Ranson SW (1942) The spontaneous activity and food intake in rats with hypothalamic lesions. Am J Physiol 36:609–616Google Scholar
  58. 58.
    Holtzheimer PE, Mayberg HS (2011) Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci 34:289–307PubMedGoogle Scholar
  59. 59.
    Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810PubMedGoogle Scholar
  60. 60.
    Huang XF, Han M, South T, Storlien L (2003) Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Brain Res 992:9–19PubMedGoogle Scholar
  61. 61.
    Huff W, Lenartz D, Schormann M, Lee SH, Kuhn J, Koulousakis A, Mai J, Daumann J, Maarouf M, Klosterkotter J, Sturm V (2010) Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year. Clin Neurol Neurosurg 112:137–143PubMedGoogle Scholar
  62. 62.
    Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedGoogle Scholar
  63. 63.
    Jeffery RW, Kelly KM, Rothman AJ, Sherwood NE, Boutelle KN (2004) The weight loss experience: a descriptive analysis. Ann Behav Med 27:100–106PubMedGoogle Scholar
  64. 64.
    Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641PubMedGoogle Scholar
  65. 65.
    Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244PubMedGoogle Scholar
  66. 66.
    Kelley AE, Stinus L (1985) Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with L-dopa. Behav Neurosci 99:531–545PubMedGoogle Scholar
  67. 67.
    Kennedy GC (1950) The hypothalamic control of food intake in rats. Proc R Soc Lond B Biol Sci 137:535–549PubMedGoogle Scholar
  68. 68.
    Kenny PJ (2011) Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–679PubMedGoogle Scholar
  69. 69.
    Knapp CM, Tozier L, Pak A, Ciraulo DA, Kornetsky C (2009) Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav 92:474–479PubMedGoogle Scholar
  70. 70.
    Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN (2010) Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci U S A 107:14811–14816PubMedGoogle Scholar
  71. 71.
    Krayenbuhl H, Wyss OA, Yasargil MG (1961) Bilateral thalamotomy and pallidotomy as treatment for bilateral Parkinsonism. J Neurosurg 18:429–444PubMedGoogle Scholar
  72. 72.
    Kuhn J, Bauer R, Pohl S, Lenartz D, Huff W, Kim EH, Klosterkoetter J, Sturm V (2009) Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res 15:196–201PubMedGoogle Scholar
  73. 73.
    Kuhn J, Lenartz D, Huff W, Lee S, Koulousakis A, Klosterkoetter J, Sturm V (2007) Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry 78:1152–1153PubMedGoogle Scholar
  74. 74.
    Lacan G, De Salles AA, Gorgulho AA, Krahl SE, Frighetto L, Behnke EJ, Melega WP (2008) Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey. Laboratory investigation. J Neurosurg 108:336–342PubMedGoogle Scholar
  75. 75.
    Lado FA, Velisek L, Moshe SL (2003) The effect of electrical stimulation of the subthalamic nucleus on seizures is frequency dependent. Epilepsia 44:157–164PubMedGoogle Scholar
  76. 76.
    Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68:521–534PubMedGoogle Scholar
  77. 77.
    Lee KH, Blaha CD, Harris BT, Cooper S, Hitti FL, Leiter JC, Roberts DW, Kim U (2006) Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci 23:1005–1014PubMedGoogle Scholar
  78. 78.
    Lee KH, Kristic K, van Hoff R, Hitti FL, Blaha C, Harris B, Roberts DW, Leiter JC (2007) High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Brain Res 1162:121–129PubMedGoogle Scholar
  79. 79.
    Leone M, Franzini A, Felisati G, Mea E, Curone M, Tullo V, Broggi G, Bussone G (2005) Deep brain stimulation and cluster headache. Neurol Sci 26(Suppl 2):S138–S139PubMedGoogle Scholar
  80. 80.
    Levine AS, Kotz CM, Gosnell BA (2003) Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 78:834S–842SPubMedGoogle Scholar
  81. 81.
    Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR, Hilton L, Suttorp M, Solomon V, Shekelle PG, Morton SC (2005) Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med 142:532–546PubMedGoogle Scholar
  82. 82.
    Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP, Cui JM, Wang CG (2008) Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol 13:40–46PubMedGoogle Scholar
  83. 83.
    Liu Y, Gao JH, Liu HL, Fox PT (2000) The temporal response of the brain after eating revealed by functional MRI. Nature 405:1058–1062PubMedGoogle Scholar
  84. 84.
    Maggard MA, Shugarman LR, Suttorp M, Maglione M, Sugerman HJ, Livingston EH, Nguyen NT, Li Z, Mojica WA, Hilton L, Rhodes S, Morton SC, Shekelle PG (2005) Meta-analysis: surgical treatment of obesity. Ann Intern Med 142:547–559PubMedGoogle Scholar
  85. 85.
    Mahler SV, de Wit H (2010) Cue-reactors: individual differences in cue-induced craving after food or smoking abstinence. PLoS One 5:e15475PubMedGoogle Scholar
  86. 86.
    Maldonado-Irizarry CS, Swanson CJ, Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci 15:6779–6788PubMedGoogle Scholar
  87. 87.
    Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275PubMedGoogle Scholar
  88. 88.
    Mantione M, van de Brink W, Schuurman P, Denys D (2010) Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 66:E218PubMedGoogle Scholar
  89. 89.
    Marks I (1990) Behavioural (non-chemical) addictions. Br J Addict 85:1389–1394PubMedGoogle Scholar
  90. 90.
    Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A, Huang Y, Cooper TB, Fischman MW, Kleber HD, Laruelle M (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164:622–629PubMedGoogle Scholar
  91. 91.
    Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, DeFronzo RA, Fox PT, Gao JH (1999) Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 48:1801–1806PubMedGoogle Scholar
  92. 92.
    Mayberg HS (2003) Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 13:805–815PubMedGoogle Scholar
  93. 93.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660PubMedGoogle Scholar
  94. 94.
    McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27:12601–12610PubMedGoogle Scholar
  95. 95.
    McIntyre CC, Grill WM (2002) Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J Neurophysiol 88:1592–1604PubMedGoogle Scholar
  96. 96.
    McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248PubMedGoogle Scholar
  97. 97.
    Modell JG, Glaser FB, Cyr L, Mountz JM (1992) Obsessive and compulsive characteristics of craving for alcohol in alcohol abuse and dependence. Alcohol Clin Exp Res 16:272–274PubMedGoogle Scholar
  98. 98.
    Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743PubMedGoogle Scholar
  99. 99.
    Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295PubMedGoogle Scholar
  100. 100.
    Muller UJ, Sturm V, Voges J, Heinze HJ, Galazky I, Heldmann M, Scheich H, Bogerts B (2009) Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 42:288–291PubMedGoogle Scholar
  101. 101.
    Munzberg H, Bjornholm M, Bates SH, Myers MG Jr (2005) Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 62:642–652PubMedGoogle Scholar
  102. 102.
    Munzberg H, Flier JS, Bjorbaek C (2004) Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145:4880–4889PubMedGoogle Scholar
  103. 103.
    Murer MG, Pazo JH (1993) Behavioral responses induced by electrical stimulation of the caudate nucleus in freely moving cats. Behav Brain Res 57:9–19PubMedGoogle Scholar
  104. 104.
    Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH (1999) The disease burden associated with overweight and obesity. JAMA 282:1523–1529PubMedGoogle Scholar
  105. 105.
    Narendran R, Martinez D (2008) Cocaine abuse and sensitization of striatal dopamine transmission: a critical review of the preclinical and clinical imaging literature. Synapse 62:851–869PubMedGoogle Scholar
  106. 106.
    O’Brien CP (2003) Research advances in the understanding and treatment of addiction. Am J Addict 12(Suppl 2):S36–S47PubMedGoogle Scholar
  107. 107.
    O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826PubMedGoogle Scholar
  108. 108.
    Ochner CN, Gibson C, Shanik M, Goel V, Geliebter A (2011) Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes (Lond) 35:153–166Google Scholar
  109. 109.
    Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295:1549–1555PubMedGoogle Scholar
  110. 110.
    Ogier V, Ziegler O, Mejean L, Nicolas JP, Stricker-Krongrad A (2002) Obesity is associated with decreasing levels of the circulating soluble leptin receptor in humans. Int J Obes Relat Metab Disord 26:496–503PubMedGoogle Scholar
  111. 111.
    Office of National Drug Control Policy (2004) Ed.: WEOotPOoNDC PolicyGoogle Scholar
  112. 112.
    Orlando FA, Goncalves CG, George ZM, Halverson JD, Cunningham PR, Meguid MM (2005) Neurohormonal pathways regulating food intake and changes after Roux-en-Y gastric bypass. Surg Obes Relat Dis 1:486–495PubMedGoogle Scholar
  113. 113.
    Otvos L Jr, Terrasi M, Cascio S, Cassone M, Abbadessa G, De Pascali F, Scolaro L, Knappe D, Stawikowski M, Cudic P, Wade JD, Hoffmann R, Surmacz E (2008) Development of a pharmacologically improved peptide agonist of the leptin receptor. Biochim Biophys Acta 1783:1745–1754PubMedGoogle Scholar
  114. 114.
    Petrovich GD, Ross CA, Holland PC, Gallagher M (2007) Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 27:6436–6441PubMedGoogle Scholar
  115. 115.
    Pisapia JM, Halpern CH, Williams NN, Wadden TA, Baltuch GH, Stein SC (2010) Deep brain stimulation compared with bariatric surgery for the treatment of morbid obesity: a decision analysis study. Neurosurg Focus 29:E15PubMedGoogle Scholar
  116. 116.
    Pisapia JM, Halpern CH, Wolf JA, Grant R, Torres N, Halprn ER, Williams NN, Vinai P, O’Reardon JP, Whiting DM, Wadden TA, Caplan AL, Baltuch GH (2011) Ethical considerations of deep brain stimulation for obesity. 2010 Congress of Neurological Surgeons Annual Meeting, San FranciscoGoogle Scholar
  117. 117.
    Predy PA, Kokkindis L (1984) Sensitization to the effects of repeated amphetamine administration on intracranial self-stimulation: evidence for changes in reward processes. Behav Brain Res 13:251–259PubMedGoogle Scholar
  118. 118.
    Quaade F, Vaernet K, Larsson S (1974) Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochir (Wien) 30:111–117Google Scholar
  119. 119.
    Rauch SL (2003) Neuroimaging and neurocircuitry models pertaining to the neurosurgical treatment of psychiatric disorders. Neurosurg Clin N Am 14:213–223, vii-viiiPubMedGoogle Scholar
  120. 120.
    Rauch SL, Dougherty DD, Malone D, Rezai A, Friehs G, Fischman AJ, Alpert NM, Haber SN, Stypulkowski PH, Rise MT, Rasmussen SA, Greenberg BD (2006) A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104:558–565PubMedGoogle Scholar
  121. 121.
    Robinson TE, Becker JB (1982) Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol 85:253–254PubMedGoogle Scholar
  122. 122.
    Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291PubMedGoogle Scholar
  123. 123.
    Roe DA, Eickwort KR (1976) Relationships between obesity and associated health factors with unemployment among low income women. J Am Med Womens Assoc 31: 193–194, 198–199, 203–204Google Scholar
  124. 124.
    Rolls ET (1984) The neurophysiology of feeding. Int J Obes 8(Suppl 1):139–150PubMedGoogle Scholar
  125. 125.
    Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, Klapp BF (2007) Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37:410–421PubMedGoogle Scholar
  126. 126.
    Ruffin M, Nicolaidis S (1999) Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res 846:23–29PubMedGoogle Scholar
  127. 127.
    Sani S, Jobe K, Smith A, Kordower JH, Bakay RA (2007) Deep brain stimulation for treatment of obesity in rats. J Neurosurg 107:809–813PubMedGoogle Scholar
  128. 128.
    Sani SB, Jobe KW, Kordower J, Bakay RA (2005) Deep brain stimulation for the treatment of obesity in the rat. Seventy-third Annual Meeting, American Association of Neurological Surgeons, New OrleansGoogle Scholar
  129. 129.
    Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–377PubMedGoogle Scholar
  130. 130.
    Schloegl H, Percik R, Horstmann A, Villringer A, Stumvoll M (2011) Peptide hormones regulating appetite—focus on neuroimaging studies in humans. Diabetes Metab Res Rev 27:104–112PubMedGoogle Scholar
  131. 131.
    Shimizu H, Oh IS, Okada S, Mori M (2007) Leptin resistance and obesity. Endocr J 54:17–26PubMedGoogle Scholar
  132. 132.
    Shin AC, Zheng H, Pistell PJ, Berthoud HR (2011) Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes (Lond) 35:642–651Google Scholar
  133. 133.
    Shin JI, Park SJ, Kim JH (2011) Diminished clinical response to infliximab in rheumatoid arthritis: the role of increased soluble interleukin-2 receptor associated with leptin? Arthritis RheumGoogle Scholar
  134. 134.
    Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL (2011) Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180:129–137PubMedGoogle Scholar
  135. 135.
    Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605PubMedGoogle Scholar
  136. 136.
    Stephen JH, Halpern CH, Barrios CJ, Pisapia JM, Wolf JA, Baltuch GH, Stein SC (2011) Deep brain stimulation compared with methadone maintenance for the treatment of heroin dependence: a decision and cost-effectiveness analysis study. Senety-nineth Annual Scientific Meeting of the American Association of Neurological Surgeons, DenverGoogle Scholar
  137. 137.
    Stice E, Yokum S, Bohon C, Marti N, Smolen A (2010) Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50:1618–1625PubMedGoogle Scholar
  138. 138.
    Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE (2008) Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 41:636–647PubMedGoogle Scholar
  139. 139.
    Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 26:293–299PubMedGoogle Scholar
  140. 140.
    Tagliati M, Krack P, Volkmann J, Aziz T, Krauss JK, Kupsch A, Vidailhet AM (2011) Long-term management of DBS in dystonia: response to stimulation, adverse events, battery changes, and special considerations. Mov Disord 26(Suppl 1):S54–S62PubMedGoogle Scholar
  141. 141.
    Tataranni PA, DelParigi A (2003) Functional neuroimaging: a new generation of human brain studies in obesity research. Obes Rev 4:229–238PubMedGoogle Scholar
  142. 142.
    Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A 96:4569–4574PubMedGoogle Scholar
  143. 143.
    Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61:1021–1029PubMedGoogle Scholar
  144. 144.
    Toft M, Lilleeng B, Ramm-Pettersen J, Skogseid IM, Gundersen V, Gerdts R, Pedersen L, Skjelland M, Roste GK, Dietrichs E (2011) Long-term efficacy and mortality in Parkinson’s disease patients treated with subthalamic stimulation. Mov Disord. doi:10.1002/mds.23817
  145. 145.
    Torres N, Chabardes S, Benabid AL (2011) Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity. Adv Tech Stand Neurosurg 36:17–30PubMedGoogle Scholar
  146. 146.
    van de Sande-Lee S, Pereira FR, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR, Chaim EA, Pareja JC, Geloneze B, Li LM, Cendes F, Velloso LA (2011) Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes 60:1699–1704PubMedGoogle Scholar
  147. 147.
    Vassoler FM, Schmidt HD, Gerard ME, Famous KR, Ciraulo DA, Kornetsky C, Knapp CM, Pierce RC (2008) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 28:8735–8739PubMedGoogle Scholar
  148. 148.
    Velley L, Cardo B (1979) Long-term improvement of learning after early electrical stimulation of some central nervous structures: is the effect structure and age-dependent? Brain Res Bull 4:459–466PubMedGoogle Scholar
  149. 149.
    Vetulani J (2001) Drug addiction. Part II. Neurobiology of addiction. Pol J Pharmacol 53:303–317PubMedGoogle Scholar
  150. 150.
    Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27:827–839PubMedGoogle Scholar
  151. 151.
    Volkow ND, Baler RD, Goldstein RZ (2011) Addiction: pulling at the neural threads of social behaviors. Neuron 69:599–602PubMedGoogle Scholar
  152. 152.
    Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111:1444–1451PubMedGoogle Scholar
  153. 153.
    Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56(Suppl 1):3–8PubMedGoogle Scholar
  154. 154.
    Volkow ND, Li TK (2004) Drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci 5:963–970PubMedGoogle Scholar
  155. 155.
    Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, Chen AD, Dewey SL, Pappas N (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833PubMedGoogle Scholar
  156. 156.
    Volkow ND, Wang GJ, Fowler JS, Telang F (2008) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363:3191–3200PubMedGoogle Scholar
  157. 157.
    Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588PubMedGoogle Scholar
  158. 158.
    Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42:1537–1543PubMedGoogle Scholar
  159. 159.
    Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357PubMedGoogle Scholar
  160. 160.
    Whitfield TW Jr, Shi X, Sun WL, McGinty JF (2011) The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent. J Neurosci 31:834–842PubMedGoogle Scholar
  161. 161.
    Whiting DM, Tomycz ND, Bailes J, Whiting BB, Levitan L, Lecoultre V, Ravussin E, Wilent B, Alcindor D, Butefisch C, Angle C, Cantella D, Oh MY (2011) Lateral hypothalamic deep brain stimulation for intractable obesity: optimization of electrode stimulation parameters from metabolic chamber experiments. American Association of Neurological Surgeons, 79th Annual Meeting, DenverGoogle Scholar
  162. 162.
    Wilent WB, Oh MY, Buetefisch CM, Bailes JE, Cantella D, Angle C, Whiting DM (2010) Induction of panic attack by stimulation of the ventromedial hypothalamus. J Neurosurg 112:1295–1298PubMedGoogle Scholar
  163. 163.
    Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225PubMedGoogle Scholar
  164. 164.
    Wyrwicka W, Dobrzecka C (1960) Relationship between feeding and satiation centers of the hypothalamus. Science 132:805–806PubMedGoogle Scholar
  165. 165.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Casey H. Halpern
    • 1
  • Napoleon Torres
    • 6
  • Howard I. Hurtig
    • 3
  • John A. Wolf
    • 1
  • James Stephen
    • 1
  • Michael Y. Oh
    • 5
  • Noel N. Williams
    • 8
  • Marc A. Dichter
    • 3
    • 8
  • Jurg L. Jaggi
    • 1
  • Arthur L. Caplan
    • 4
  • Kyle M. Kampman
    • 2
  • Thomas A. Wadden
    • 7
  • Donald M. Whiting
    • 5
  • Gordon H. Baltuch
    • 1
  1. 1.Department of Neurosurgery, Center for Functional and Restorative NeurosurgeryHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Psychiatry, Center for Studies of AddictionHospital of the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of NeurologyHospital of the University of Pennsylvania, Neuroscience Graduate GroupPhiladelphiaUSA
  4. 4.Department of Medical EthicsHospital of the University of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of NeurosurgeryAllegheny General HospitalPittsburghUSA
  6. 6.Département: DRT/DTBS/SBSC/DIR CEA-LETICEA-LETI, CLINATECGrenobleFrance
  7. 7.Department of Psychiatry, Center for Studies of Weight and Eating DisordersHospital of the University of PennsylvaniaPhiladelphiaUSA
  8. 8.Department of Surgery, Division of Bariatric Surgery, Center for Studies of Weight and Eating DisordersHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations