Acta Neurochirurgica

, Volume 152, Issue 10, pp 1771–1777 | Cite as

Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells

  • Je Hoon Jeong
  • Jung Hwan Lee
  • Eun Sun Jin
  • Joong Kee Min
  • Sang Ryong Jeon
  • Kyoung Hyo Choi
Experimental research
  • 469 Downloads

Abstract

Background

Because adipose-tissue-derived stromal cell (ADSC) is readily accessible and abundant in stem cell, ADSC may be a better candidate for cell therapy and tissue engineering. This study investigated the potential of ADSC implantation to restore disc in a rat IVD model.

Methods

The first coccygeal disc segments of a Sprague–Dawley rat was left undamaged as a control (NC) group, and other two segments were damaged by needle injection. Two weeks later, ADSCs (TS) group or saline (IN) group was transplanted into each of the two damaged segments.

Results

At 6 weeks after transplantation, the TS group showed a significantly smaller reduction in disc height than the IN group and exhibited a restoration of MRI signal intensity. Hematoxylin and eosin staining revealed a greater restoration of the inner annulus structure in the TS group. Anti-Human Nucleic Antibody, collagen type II, and aggrecan, staining showed positive findings at 2 weeks after transplantation in TS group.

Conclusions

ADSCs show potential for restoring degenerative discs and may prove effective in the treatment of IVD.

Keyword

Adipose-tissue-derived stromal cell Animal model Intervertebral disc Degeneration 

References

  1. 1.
    Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100.CrossRefPubMedGoogle Scholar
  2. 2.
    Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32:430–434CrossRefPubMedGoogle Scholar
  3. 3.
    Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369. doi:10.1080/14653240310003026 CrossRefPubMedGoogle Scholar
  4. 4.
    Han B, Zhu K, Li FC, Xiao YX, Feng J, Shi ZL, Lin M, Wang J, Chen QX (2008) A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine (Phila Pa 1976) 33:1925–1934. doi:10.1097/BRS.0b013e31817c64a9 Google Scholar
  5. 5.
    Hoogendoorn RJ, Lu ZF, Kroeze RJ, Bank RA, Wuisman PI, Helder MN (2008) Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00291.x PubMedGoogle Scholar
  6. 6.
    Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297. doi:10.1002/jcb.20904 CrossRefPubMedGoogle Scholar
  7. 7.
    Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243. doi:10.1002/jnr.20041 CrossRefPubMedGoogle Scholar
  8. 8.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. doi:10.1634/stemcells.2005-0342 CrossRefPubMedGoogle Scholar
  9. 9.
    Le Visage C, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW (2006) Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis. Spine (Phila Pa 1976) 31:2036–2042. doi:10.1097/01.brs.0000231442.05245.87 Google Scholar
  10. 10.
    Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523PubMedGoogle Scholar
  11. 11.
    Lu DS, Shono Y, Oda I, Abumi K, Kaneda K (1997) Effects of chondroitinase ABC and chymopapain on spinal motion segment biomechanics. An in vivo biomechanical, radiologic, and histologic canine study. Spine 22:1828–1834, discussion 1834-1825CrossRefPubMedGoogle Scholar
  12. 12.
    Lu ZF, Zandieh Doulabi B, Wuisman PI, Bank RA, Helder MN (2008) Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00278.x Google Scholar
  13. 13.
    Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474. doi:10.1002/art.11365 CrossRefPubMedGoogle Scholar
  14. 14.
    Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT, Robbins PD, Evans CH (1999) Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 24:2419–2425CrossRefPubMedGoogle Scholar
  15. 15.
    Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA (2003) The new stem cell biology: something for everyone. Mol Pathol 56:86–96CrossRefPubMedGoogle Scholar
  16. 16.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMedGoogle Scholar
  17. 17.
    Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24:3531–3541.CrossRefPubMedGoogle Scholar
  18. 18.
    Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M, Nakai T, Ando K, Hotta T (2006) Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27:335–345. doi:10.1016/j.biomaterials.2005.06.038 CrossRefPubMedGoogle Scholar
  19. 19.
    Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827. doi:10.1634/stemcells.2006-0589 CrossRefPubMedGoogle Scholar
  20. 20.
    Tapp H, Deepe R, Ingram JA, Kuremsky M, Hanley EN Jr, Gruber HE (2008) Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix. Arthritis Res Ther 10:R89. doi:10.1186/ar2473 CrossRefPubMedGoogle Scholar
  21. 21.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. doi:10.1091/mbc.E02-02-0105 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Je Hoon Jeong
    • 1
    • 2
  • Jung Hwan Lee
    • 2
    • 3
  • Eun Sun Jin
    • 2
    • 4
  • Joong Kee Min
    • 2
  • Sang Ryong Jeon
    • 2
  • Kyoung Hyo Choi
    • 2
    • 5
  1. 1.Department of Neurological surgeryCollege of Medicine, Hallym UniversitySeoulKorea
  2. 2.Laboratory of Stem Cell Therapy, College of Medicine, Asan Medical CenterUniversity of UlsanSeoulSouth Korea
  3. 3.Department of Physical Medicine and RehabilitationWooridul Spine HospitalSeoulSouth Korea
  4. 4.Cardiovascular CenterKyung Hee East-West Neo Medical CenterSeoulKorea
  5. 5.Department of Rehabilitation Medicine, Asan Medical Center, College of MedicineUniversity of UlsanSeoulSouth Korea

Personalised recommendations