Acta Neurochirurgica

, 151:1377

Association of F18-fluoro-ethyl-tyrosin uptake and 5-aminolevulinic acid-induced fluorescence in gliomas

  • Florian Stockhammer
  • Martin Misch
  • Peter Horn
  • Arend Koch
  • Nyuyki Fonyuy
  • Michail Plotkin
Clinical Article

Abstract

Purpose

Malignant gliomas are highly infiltrative tumours with a fatal prognosis. F18-fluoroethyl-tyrosine (FET)-positron emission tomography (PET) often reveals a broader extension of these tumours compared with contrast-enhanced magnetic resonance imaging (MRI). Complete resection of the contrast-enhancing lesion is aspired. Fluorescence-guided resection using 5-aminolevulinic acid (5-ALA) improved the extent of resection. In this study, we investigated whether the FET uptake correlates with the extent of resection using 5-ALA-induced fluorescence.

Methods

Thirteen patients who underwent preoperative and postoperative MRI, FET-PET and fluorescence-guided neuronavigated resection were included in this study. The areas in which intraoperative fluorescence terminated the resection were marked. After fusion of PET and MRI, the standardized uptake value (SUV) of FET related to normal brain (SUVR) was measured in regions of interest corresponding to resected and remaining tissue, respectively. Receiver-operating characteristic (ROC) curve analysis determined the optimal threshold of the relative SUV anticipating 5-ALA-induced fluorescence.

Results

During resection a vivid fluorescence was present in all patients. Histology revealed glioblastomas in 11 cases, an anaplastic astrocytoma in one case and a low-grade astrocytoma in one case. The median FET SUVR was higher in areas corresponding to the fluorescent tumour compared with the non-fluorescent normal brain (2.321 vs 1.142, p < 0.0001, t-test). A SUVR greater than 1.374 predicted the fluorescence with a sensitivity of 0.87 [95% confidence interval (CI): 0.74–0.94] and a specificity of 0.94 (CI: 0.84–0.99). The area under the ROC curve was 0.9656 (CI: 0.9364–0.9948).

Conclusions

FET uptake predicts the 5-ALA-induced fluorescence in glioma patients. Thus, FET-PET provides useful information for planning glioma resection.

Keywords

Glioblastoma F18-FET PET 5-ALA Fluorescence 

References

  1. 1.
    Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393CrossRefPubMedGoogle Scholar
  2. 2.
    Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E (2005) Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 standard. J Nucl Med 46:2083–2091PubMedGoogle Scholar
  3. 3.
    Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461CrossRefPubMedGoogle Scholar
  4. 4.
    Burger PC, Heinz ER, Shibata T, Kleihues P (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68:698–704CrossRefPubMedGoogle Scholar
  5. 5.
    Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, Smith DE, Keep RF (2003) Transport of 5-aminolevulinic acid between blood and brain. Brain Res 959:226–234CrossRefPubMedGoogle Scholar
  6. 6.
    Floeth FW, Sabel M, Stoffels G, Pauleit D, Hamacher K, Steiger HJ, Langen KJ (2008) Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J Nucl Med 49:730–737CrossRefPubMedGoogle Scholar
  7. 7.
    Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H (2008) 5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly 138:180–185PubMedGoogle Scholar
  8. 8.
    Henze M, Mohammed A, Schlemmer HP, Herfarth KK, Hoffner S, Haufe S, Mier W, Eisenhut M, Debus J, Haberkorn U (2004) PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J Nucl Med 45:579–586PubMedGoogle Scholar
  9. 9.
    Ishihara R, Katayama Y, Watanabe T, Yoshino A, Fukushima T, Sakatani K (2007) Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas. Neurol Med Chir (Tokyo) 47:53–57 discussion 57CrossRefGoogle Scholar
  10. 10.
    Krengli M, Loi G, Sacchetti G, Manfredda I, Gambaro G, Brambilla M, Carriero A, Inglese E (2007) Delineation of target volume for radiotherapy of high-grade gliomas by 99m Tc-MIBI SPECT and MRI fusion. Strahlenther Onkol 183:689–694CrossRefPubMedGoogle Scholar
  11. 11.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198CrossRefPubMedGoogle Scholar
  12. 12.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, Zilles K, Coenen HH, Langen KJ (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefPubMedGoogle Scholar
  13. 13.
    Pichlmeier U, Bink A, Schackert G, Stummer W (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 10:1025–1034CrossRefPubMedGoogle Scholar
  14. 14.
    Plotkin M, Gneveckow U, Meier-Hauff K, Amthauer H, Feussner A, Denecke T, Gutberlet M, Jordan A, Felix R, Wust P (2006) 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperthermia 22:319–325CrossRefPubMedGoogle Scholar
  15. 15.
    Popperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470CrossRefPubMedGoogle Scholar
  16. 16.
    Shibata Y, Yamamoto T, Takano S, Katayama W, Takeda T, Matsumura A (2009) Direct comparison of thallium-201 and technetium-99m MIBI SPECT of a glioma by receiver operating characteristic analysis. J Clin Neurosci 16:264–269CrossRefPubMedGoogle Scholar
  17. 17.
    Stober B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R (2006) Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33:932–939CrossRefPubMedGoogle Scholar
  18. 18.
    Stockhammer F, Plotkin M, Amthauer H, van Landeghem FK, Woiciechowsky C (2008) Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neurooncol 88:205–210CrossRefPubMedGoogle Scholar
  19. 19.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013CrossRefPubMedGoogle Scholar
  20. 20.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMedGoogle Scholar
  21. 21.
    Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576 discussion 564–576CrossRefPubMedGoogle Scholar
  22. 22.
    Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169CrossRefPubMedGoogle Scholar
  23. 23.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525 discussion 525–516CrossRefPubMedGoogle Scholar
  24. 24.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469CrossRefPubMedGoogle Scholar
  26. 26.
    Weber DC, Zilli T, Buchegger F, Casanova N, Haller G, Rouzaud M, Nouet P, Dipasquale G, Ratib O, Zaidi H, Vees H, Miralbell R (2008) [(18)F]Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 3:44CrossRefPubMedGoogle Scholar
  27. 27.
    Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprenkel JW, Tulleken CA (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104:360–368CrossRefPubMedGoogle Scholar
  28. 28.
    Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S, Mitteregger G, Kretzschmar H, Herms J (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. GliaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Florian Stockhammer
    • 1
  • Martin Misch
    • 1
  • Peter Horn
    • 1
  • Arend Koch
    • 2
  • Nyuyki Fonyuy
    • 3
  • Michail Plotkin
    • 3
  1. 1.Department of NeurosurgeryCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of NeuropathologyCharité Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of Nuclear MedicineCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations