Acta Neurochirurgica

, Volume 151, Issue 7, pp 823–829 | Cite as

Contact position analysis of deep brain stimulation electrodes on post-operative CT images

  • Simone Hemm
  • Jérôme Coste
  • Jean Gabrillargues
  • Lemlih Ouchchane
  • Laurent Sarry
  • François Caire
  • François Vassal
  • Christophe Nuti
  • Philippe Derost
  • Franck Durif
  • Jean-Jacques Lemaire
Technical Note

Abstract

Purpose

Groups performing deep brain stimulation advocate post-operative imaging [magnetic resonance imaging (MRI) or computer tomography (CT)] to analyse the position of each electrode contact. The artefact of the Activa 3389 electrode had been described for MRI but not for CT. We undertook an electrode artefact analysis for CT imaging to obtain information on the artefact dimensions and related electrode contact positions.

Methods

The electrode was fixed on a phantom in a set position and six acquisitions were run (in-vitro study). The artefacts were compared with the real electrode position. Ten post-operative acquisitions were analysed (in-vivo analysis). We measured: H (height of the lateral black artefact), D (distance between the beginning of the white and the lateral black artefacts) and W (maximal artefact width), representing respectively the lengths of the four contacts and the electrode tip and width of the contact zone. A Student t-test compared the results: in vivo vs in vitro and coronal vs sagittal reconstructions along the electrode.

Results

The limits of the lateral black artefact around the electrode contacts corresponded to the final electrode position. There was no significant difference for D (in vivo, 1.1 ± 0.1 mm; in vitro, 1.2 ± 0.2 mm; p = 0.213), while W and H differed slightly (in vivo, W = 3.3 ± 0.2 mm, H = 7.7 ± 0.2 mm; in vitro, W = 3.1 ± 0.1 mm, H = 7.5 ± 0.2 mm). Results obtained with sagittal and coronal reconstructions were similar (p > 0.6).

Conclusions

Precise three-dimensional (3D) localisation of the four-contact zone of the electrode can be obtained by CT identification of the limits of the lateral black artefact. The relative position of the four contacts is deduced from the size of the contacts and the inter-contact distance. Sagittal and coronal reconstructions along the electrode direction should be considered for the identification of the four electrode contacts. CT offers a useful alternative to post-operative MRI.

Keywords

Electrode artefact STN-DBS CT Position analysis 

References

  1. 1.
    Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E, Gross C (2004) High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. FASEB J 18:528–530PubMedGoogle Scholar
  2. 2.
    Breit S, Schulz JB, Benabid AL (2004) Deep brain stimulation. Cell Tissue Res 318:275–288PubMedCrossRefGoogle Scholar
  3. 3.
    Caire F, Derost P, Coste J, Bonny JM, Durif F, Frenoux E, Villeger A, Lemaire JJ (2006) Subthalamic deep brain stimulation for severe idiopathic Parkinson’s disease. Location study of the effective contacts. Neurochirurgie 52:15–25PubMedCrossRefGoogle Scholar
  4. 4.
    Cif L, El Fertit H, Vayssiere N, Hemm S, Hardouin E, Gannau A, Tuffery S, Coubes P (2003) Treatment of dystonic syndromes by chronic electrical stimulation of the internal globus pallidus. J Neurosurg Sci 47:52–55PubMedGoogle Scholar
  5. 5.
    Duffner F, Schiffbauer H, Breit S, Friese S, Freudenstein D (2002) Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir (Wien) 144:445–451CrossRefGoogle Scholar
  6. 6.
    Erola T, Karinen P, Heikkinen E, Tuominen J, Haapaniemi T, Koivukangas J, Myllyla V (2005) Bilateral subthalamic nucleus stimulation improves health-related quality of life in Parkinsonian patients. Parkinsonism Relat Disord 11:89–94PubMedCrossRefGoogle Scholar
  7. 7.
    Ferroli P, Franzini A, Marras C, Maccagnano E, D’Incerti L, Broggi G (2004) A simple method to assess accuracy of deep brain stimulation electrode placement: pre-operative stereotactic CT + postoperative MR image fusion. Stereotact Funct Neurosurg 82:14–19PubMedCrossRefGoogle Scholar
  8. 8.
    Gleason CA, Kaula NF, Hricak H, Schmidt RA, Tanagho EA (1992) The effect of magnetic resonance imagers on implanted neurostimulators. Pacing Clin Electrophysiol 15:81–94PubMedCrossRefGoogle Scholar
  9. 9.
    Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, Weinert D, Pfister G, Muller D, Mehdorn HM, Deuschl G, Volkmann J (2004) Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19:1050–1054PubMedCrossRefGoogle Scholar
  10. 10.
    Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349:1925–1934PubMedCrossRefGoogle Scholar
  11. 11.
    Krystkowiak P, Devos D, Dujardin K, Delmaire C, Bardinet E, Delval A, Delliaux M, Cottencin O, Simonin C, Yelnik J, Blond S, Defebre L, Destée A (2007) Impact cognitif et moteur de la stimuation du pallidum externe dans la maladie de Huntington: données préliminaires. Rev Neurol 163:34–35CrossRefGoogle Scholar
  12. 12.
    Lemaire JJ, Coste J, Ouchchane L, Hemm S, Derost P, Ulla M, Siadoux S, Gabrillargues J, Durif F, Chazal J (2007) MRI anatomical mapping and direct stereotactic targeting in the subthalamic region: functional and anatomical correspondence in Parkinson’s disease. Int J CARS 2:75–85. doi:10.1007/s11548-007-0124-2 Google Scholar
  13. 13.
    Ondo WG, Bronte-Stewart H (2005) The North American survey of placement and adjustment strategies for deep brain stimulation. Stereotact Funct Neurosurg 83:142–147PubMedCrossRefGoogle Scholar
  14. 14.
    Pinto S, Le Bas JF, Castana L, Krack P, Pollak P, Benabid AL (2007) Comparison of two techniques to postoperatively localize the electrode contacts used for subthalamic nucleus stimulation. Neurosurgery 60:285–292 discussion 292–294PubMedCrossRefGoogle Scholar
  15. 15.
    Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P, Meuli R (2004) Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien) 146:161–164CrossRefGoogle Scholar
  16. 16.
    Rezai AR, Phillips M, Baker KB, Sharan AD, Nyenhuis J, Tkach J, Henderson J, Shellock FG (2004) Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 39:300–303PubMedCrossRefGoogle Scholar
  17. 17.
    Schueler BA, Parrish TB, Lin JC, Hammer BE, Pangrle BJ, Ritenour ER, Kucharczyk J, Truwit CL (1999) MRI compatibility and visibility assessment of implantable medical devices. J Magn Reson Imaging 9:596–603PubMedCrossRefGoogle Scholar
  18. 18.
    Uitti RJ, Tsuboi Y, Pooley RA, Putzke JD, Turk MF, Wszolek ZK, Witte RJ, Wharen RE Jr (2002) Magnetic resonance imaging and deep brain stimulation. Neurosurgery 51:1423–1428 discussion 1428–1431PubMedCrossRefGoogle Scholar
  19. 19.
    Vayssiere N, van der Gaag N, Cif L, Hemm S, Verdier R, Frerebeau P, Coubes P (2004) Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. J Neurosurg 101:181–188PubMedCrossRefGoogle Scholar
  20. 20.
    Vercueil L, Pollak P, Fraix V, Caputo E, Moro E, Benazzouz A, Xie J, Koudsie A, Benabid AL (2001) Deep brain stimulation in the treatment of severe dystonia. J Neurol 248:695–700PubMedCrossRefGoogle Scholar
  21. 21.
    Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279PubMedCrossRefGoogle Scholar
  22. 22.
    Wells WM 3rd, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:35–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Simone Hemm
    • 1
    • 2
  • Jérôme Coste
    • 1
    • 2
  • Jean Gabrillargues
    • 1
    • 3
  • Lemlih Ouchchane
    • 1
    • 4
  • Laurent Sarry
    • 1
  • François Caire
    • 1
    • 5
  • François Vassal
    • 1
    • 6
  • Christophe Nuti
    • 1
    • 6
  • Philippe Derost
    • 7
  • Franck Durif
    • 7
  • Jean-Jacques Lemaire
    • 1
    • 2
    • 8
  1. 1.Inserm, ERI 14Equipe de Recherche en Imagerie MédicaleClermont-FerrandFrance
  2. 2.CHU Clermont-FerrandHôpital Gabriel-Montpied, Service de Neurochirurgie AClermont-FerrandFrance
  3. 3.CHU Clermont-FerrandHôpital Gabriel-Montpied, Service de Radiologie AClermont-FerrandFrance
  4. 4.Université Clermont-Ferrand 1, UFR Médecine, Unité de Bio statistiques, télématique et traitement d’imageClermont-FerrandFrance
  5. 5.CHU Limoges, Hôpital Dupuytren, Service de NeurochirurgieLimogesFrance
  6. 6.CHU Saint-EtienneHôpital Hôpital Bellevue, Service de NeurochirurgieSaint-EtienneFrance
  7. 7.CHU Clermont-FerrandHôpital Gabriel-Montpied, Service de NeurologieClermont-FerrandFrance
  8. 8.Service de Neurochirurgie AHôpital Gabriel-MontpiedClermont-Ferrand cedex 1France

Personalised recommendations