Acta Neurochirurgica

, 148:1157 | Cite as

Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury

  • M. Uzan
  • H. Erman
  • T. Tanriverdi
  • G. Z. Sanus
  • A. Kafadar
  • H. Uzun
Clinical Article

Summary

Objective. To determine whether sFas, caspase-3, proteins which propagate apoptosis, and bcl-2, a protein which inhibits apoptosis, would be increased in cerebrospinal fluid (CSF) in patients with severe traumatic brain injury (TBI) and to examine the correlation of sFas, caspase-3, and bcl-2 with each other and with clinical variables.

Methods. sFas, caspase-3, and bcl-2 were measured in CSF of 14 patients with severe TBI on days 1, 2, 3, 5, 7, and 10 post-trauma. The results were compared with CSF samples from control patients who had no brain and spinal pathology and had undergone spinal anesthesia for some other reason. Soluble Fas and bcl-2 were measured by ELISA while caspase-3 was measured enzymatically.

Results. No sFas, caspase-3, and bcl-2 activities were found in CSF of controls, but activities significantly increased in CSF of patients at all time points post-trauma (p < 0.01). Caspase-3 significantly correlated to intracranial pressure (p = 0.01) and cerebral perfusion pressure (p = 0.04). Soluble Fas and caspase-3 peaks coincided on day 5 post-trauma and there was significant association between sFas and caspase-3 increase (p = 0.01).

Conclusion. This study indicates a prolonged activation of pro-apoptotic (sFas, caspase-3) and anti-apoptotic (bcl-2) proteins after severe TBI in humans. The degree of activation of particularly caspase-3 may be related to the severity of the injury. Parallel increases of these three molecules may indicate a pivotal role of apoptosis in the pathophysiology of post-traumatic brain oedema, secondary cell destruction and chronic cell loss following severe TBI and may open new targets for post-traumatic therapeutic interventions.

Keywords: Apoptosis; bcl-2; caspase-3; sFas; programmed cell death. 

References

  1. Abbas, AK 1996Die and let live: eliminating dangerous lymphocytesCell84655657PubMedCrossRefGoogle Scholar
  2. Beer, R, Franz, G, Schopf, M, Reindl, M, Zelger, B, Schmutzhard, E, Poewe, W, Kampfl, A 2000Expression of Fas and Fas ligand after experimental traumatic brain injury in the ratJ Cereb Blood Flow Metab20669677PubMedCrossRefGoogle Scholar
  3. Cernak, I, Chapman, SM, Hamlin, GP, Vink, R 2002Temporal characterization of pro- and anti-apoptotic mechanisms following diffuse traumatic brain injury in ratsJ Clin Neurosci9565572PubMedCrossRefGoogle Scholar
  4. Clark, RS, Kochanek, PM, Adelson, PD, Bell, MJ, Carcillo, JA, Chen, M, Wisniewski, SR, Janesko, K, Whalen, MJ, Graham, SH 2000Increases in bcl-2 protein in cerebrospinal fluid and evidence for programmed cell death in infants and children after severe traumatic brain injuryJ Pediatr137197204PubMedCrossRefGoogle Scholar
  5. Clark, RS, Kochanek, PM, Chen, M, Watkins, SC, Marion, DW, Chen, J, Hamilton, RL, Loeffert, JE, Graham, SH 1999Increases in bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injuryFASEB J13813821PubMedGoogle Scholar
  6. Clark, RS, Kochanek, PM, Watkins, SC, Chen, M, Dixon, CE, Seidberg, NA, Melick, J, Loeffert, E, Nathaniel, PD, Jin, KL, Graham, SH 2000Caspase-3 mediated neuronal death after traumatic brain injury in ratsJ Neurochem74740753PubMedCrossRefGoogle Scholar
  7. Dowling, P, Shang, G, Raval, S, Menonna, J, Cook, S, Husar, W 1996Involvement of CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosisJ Exp Med18415131518PubMedCrossRefGoogle Scholar
  8. Ertel, W, Keel, M, Stocker, R, Imhof, HG, Leist, M, Steckholzer, U, Tanaka, M, Trentz, O, Nagata, S 1997Detectable concentrations of Fas ligand in cerebrospinal fluid after severe head injuryJ Neuroimmunol809396PubMedCrossRefGoogle Scholar
  9. French, LE, Hahne, M, Viard, I, radlgruber, G, Zanone, R, Becker, K, Müller, C, Tschopp, J 1996Fas and Fas Ligand in embros and adult mice: Ligand expression in several immune-privilegad tissues and coexpression in adult tissues characterized by apoptotic cell turnoverJ Cell Biol133335343PubMedCrossRefGoogle Scholar
  10. Harter, L, Keel, M, Hentze, H, Leist, M, Ertel, W 2001Caspase-3 activity is present in cerebrospinal fluid from patients with traumatic brain injuryJ Neuroimmunol1217678PubMedCrossRefGoogle Scholar
  11. Jennett, B, Bond, M 1975Assessment of outcome after severe brain damageLancet1480484PubMedCrossRefGoogle Scholar
  12. Kuida, K 2000Caspase-9Int J Biochem Cell Biol32121124PubMedCrossRefGoogle Scholar
  13. Lezlinger, PM, Marx, A, Trentz, O, Kossmann, T, Morganti-Kossmann, MC 2002Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humansJ Neuroimmunol122167174CrossRefGoogle Scholar
  14. Li, P, Nijhawan, D, Budihardjo, I, Srinivasula, SM, Ahmad, M, Alnemri, ES, Wang, X 1997Cytochrome c and dATP dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascadeCell91479487PubMedCrossRefGoogle Scholar
  15. Liou, AKF, Clark, RS, Henshall, DC, Yin, XM, Chen, J 2003To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathwaysProg Neurobiol69103142PubMedCrossRefGoogle Scholar
  16. Lu, J, Moochhala, S, Kaur, C, Ling, EA 2000Changes in apoptosis-related protein (p53, Bax, Bcl-2 and Fos) expression with DNA fragmentation in the central nervous system in rats after closed head injuryNeurosci Lett2908992PubMedCrossRefGoogle Scholar
  17. Lezebnik, YA, Takahashi, A, Poirier, GG, Kaufmann, SH, Earnshaw, WC 1995Characterization of the execution phase of apoptosis in vitro using extracts from condemmed-phase cellsJ Cell Sci194149Google Scholar
  18. Marshall, LF, Marshall, SB, Klauber, MR, van Berkum, CM 1991A new classification of head injury based on computerized tomographyJ Neurosurg75S14S20Google Scholar
  19. Medema, JP, Scaffidi, C, Kischkel, FC, Shevchenko, A, Mann, M, Krammar, PH, Peter, ME 1997FLICE is activated by association with the CD95 death inducing signaling complex (DISC)Embo J1627942804PubMedCrossRefGoogle Scholar
  20. Muzio, M, Stcokwell, BR, Stennicke, HR, Salvesen, GS, Dixit, VM 1998An iduced proximity model for caspase-8 activationJ Biol Chem27329262930PubMedCrossRefGoogle Scholar
  21. Nagata, S 2000Apoptotic DNA fragmentationExp Cell Res2561218PubMedCrossRefGoogle Scholar
  22. Nathoo, N, Narotam, PK, Agrawal, DK, Connolly, CA, van Dellen, JR, Barnett, GH, Chetty, R, Phill, D 2004Influence of apoptosis on neurological outcome following traumatic cerebral contusionJ Neurosurg101233240PubMedGoogle Scholar
  23. Ng, I, Yeo, TT, Tang, WT, Soong, R, Ng, PY, Smith, DS 2000Apoptosis occurs after cerebral contusions in humansNeurosurgery46949956PubMedCrossRefGoogle Scholar
  24. Raghupathi, R, Conti, AC, Graham, DI, Kralewski, S, Reed, JC, Grady, MS, Trojanowski, JQ, Mcintosh, TK 2002Mild traumatic brain injury induces apoptotic cell death in the cortex that is preceded by decreases in cellular Bcl-2 immunoreactivityNeuroscience110605616PubMedCrossRefGoogle Scholar
  25. Raghupathi, R, Fernandez, SC, Murai, H, Trusko, SP, Scott, RW, Nishioka, WK, McIntosh, TK 1998BCL-2 overexpression attenuates cortical cell loss after traumatic injury in transgenic miceJ Cereb Blood Flow Metab1812591269PubMedCrossRefGoogle Scholar
  26. Reed, JC 1994Bcl-2 and the regulation of programmed cell deathJ Cell Biol12416PubMedCrossRefGoogle Scholar
  27. Reed, JC 1998Bcl-2 family proteinsOncogene1732253236PubMedCrossRefGoogle Scholar
  28. Salvesen, GS, Dixit, VM 1997Caspases: intracellular signaling by proteolysisCell91443446PubMedCrossRefGoogle Scholar
  29. Saul, TG, Ducker, TB 1982Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injuryJ neurosurg56498503PubMedCrossRefGoogle Scholar
  30. Teasdale, G, Jennett, B 1974Assessment of coma and impaired consciousness. A practical scaleLancet28184PubMedCrossRefGoogle Scholar
  31. Teasdale, G, Murray, G, Parker, L, Jennett, B 1979Adding up the Glasgow Coma ScoreActa Neurochir [Suppl]281316Google Scholar
  32. Thornberry, NA 1994Interleukin-1 beta converting enzymeMethods Enzymol244615631PubMedCrossRefGoogle Scholar
  33. Wennersten, A, Holmin, S, Mathiesen, T 2003Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the ratActa Neuropathol105281288PubMedGoogle Scholar
  34. Yakovlev, AG, Knoblach, SM, Fan, L, Fox, GB, Goodnight, R, Faden, AI 1997Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injuryJ Neurosci1774157424PubMedGoogle Scholar
  35. Yakovlev, AG, Ota, K, Wang, G, Movsesyan, V, Bao, WL, Yoshihara, K, Faden, AI 2001Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injuryJ Neurosci2174397446PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Uzan
    • 1
  • H. Erman
    • 1
  • T. Tanriverdi
    • 1
  • G. Z. Sanus
    • 1
  • A. Kafadar
    • 1
  • H. Uzun
    • 2
  1. 1.Department of Neurosurgery, Cerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
  2. 2.Department of Biochemistry, Cerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations