, Volume 102, Issue 1, pp 43–63 | Cite as

Resource allocation based on redundancy models for high availability cloud

  • Glauco Estácio Gonçalves
  • Patricia Takako EndoEmail author
  • Moises Rodrigues
  • Djamel H. Sadok
  • Judith Kelner
  • Calin Curescu


Today, most innovation on Information Technology and Communication is cloud-centric and an increasing number of organizations believe that this transition is ever more unavoidable. With this increased demand for Cloud services, providers are facing many challenges regarding how to avoid outages and optimization of resource management since they impact directly in costs and profits. In this paper, we propose the cost-based allocation (CBA), a resource allocation system that takes into consideration the minimum availability level required by the user, and the minimum cost to allocate resources while complying with the service availability forum redundancy models. Results show that, considering occupation and cost metrics, our CBA algorithm presents the best overall performance between evaluated strategies.


Cloud computing Redundancy models High availability 

Mathematics Subject Classification

65K05 68N30 



This work was supported by the RLAM Innovation Center, Ericsson Telecomunicações S.A., Brazil.


  1. 1.
    Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges. In: 2010 24th IEEE international conference on advanced information networking and applications. IEEE, New York, pp 27–33Google Scholar
  2. 2.
    Cérin C, Coti C, Delort P, Diaz F, Gagnaire M, Gaumer Q, Guillaume N, Lous J, Lubiarz S, Raffaelli J et al (2013) Downtime statistics of current cloud solutions. Technical report, International working group on cloud computing resiliencyGoogle Scholar
  3. 3.
    Ponemon (2016) Cost of data center outages—data center performance benchmark series. Ponemon Institute, New YorkGoogle Scholar
  4. 4.
    Puthal D, Sahoo B, Mishra S, Swain S (2015) Cloud computing features, issues, and challenges: a big picture. In: 2015 International conference on computational intelligence and networks (CINE). IEEE, New York, pp 116–123Google Scholar
  5. 5.
    da Fonseca NL, Boutaba R (2015) Cloud architectures, networks, services, and management. Wiley, LondonGoogle Scholar
  6. 6.
    Bezerra MC, Melo R, Dantas J, Maciel P, Vieira F (2014) Availability modeling and analysis of a VoD service for eucalyptus platform. In: 2014 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, New York, pp 3779–3784Google Scholar
  7. 7.
    SAF (2011) Availability management framework—application interface specification SAI-AIS-AMF-B.04.01. SAForumGoogle Scholar
  8. 8.
    Toeroe M, Tam F (2012) Service availability: principles and practice. Wiley, LondonCrossRefGoogle Scholar
  9. 9.
    Kanso A, Toeroe M, Khendek F (2014) Comparing redundancy models for high availability middleware. Computing 96(10):975–993CrossRefGoogle Scholar
  10. 10.
    Gonçalves G, Endo P, Rodrigues M, Sadok D, Curesco C (2016) Risk-based model for availability estimation of saf redundancy models. In: IEEE symposium on computers and communications (ISCC). IEEE, New YorkGoogle Scholar
  11. 11.
    Fréville A (2004) The multidimensional 0–1 knapsack problem: an overview. Eur J Oper Res 155(1):1–21MathSciNetCrossRefGoogle Scholar
  12. 12.
    Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, LondonzbMATHGoogle Scholar
  13. 13.
    Wolstenholme LC (2017) Reliability modelling: a statistical approach. Routledge, LondonzbMATHGoogle Scholar
  14. 14.
    Nabi M, Toeroe M, Khendek F (2016) Availability in the cloud: state of the art. J Netw Comput Appl 60:54–67CrossRefGoogle Scholar
  15. 15.
    Gomes DM (2016) Performance evaluation of checkpoint services for multi-tier stateful applications. Graduate thesis, Federal Rural University of PernambucoGoogle Scholar
  16. 16.
    Amazon (2018) Amazon EC2 instance types. Accessed May, 2018
  17. 17.
    Vilaplana J, Solsona F, Teixidó I, Mateo J, Abella F, Rius J (2014) A queuing theory model for cloud computing. J Supercomput 69(1):492–507CrossRefGoogle Scholar
  18. 18.
    Pham TN, Tsai MF, Nguyen DB, Dow CR, Deng DJ (2015) A cloud-based smart-parking system based on internet-of-things technologies. IEEE Access 3:1581–1591CrossRefGoogle Scholar
  19. 19.
    Al-Haidari F, Sqalli M, Salah K (2015) Evaluation of the impact of edos attacks against cloud computing services. Arab J Sci Eng 40(3):773–785CrossRefGoogle Scholar
  20. 20.
    Adhikary T, Das AK, Razzaque MA, Alrubaian M, Hassan MM, Alamri A (2017) Quality of service aware cloud resource provisioning for social multimedia services and applications. Multimed Tools Appl 76(12):14,485–14,509CrossRefGoogle Scholar
  21. 21.
    Goldsztajn D, Ferragut A, Paganini F, Jonckheere M (2018) Controlling the number of active instances in a cloud environment. ACM SIGMETRICS Perform Eval Rev 45(2):15–20CrossRefGoogle Scholar
  22. 22.
    Mao M, Humphrey M (2012) A performance study on the vm startup time in the cloud. In: 2012 IEEE 5th international conference on cloud computing (CLOUD). IEEE, New York, pp 423–430Google Scholar
  23. 23.
    De Melo RM, Bezerra MC, Dantas J, Matos R, De Melo Filho IJ, Maciel P (2014) Redundant VoD streaming service in a private cloud: availability modeling and sensitivity analysis. Math Probl Eng 2014:14Google Scholar
  24. 24.
    Khazaei H, Misic J, Misic V, Mohammadi NB (2012) Availability analysis of cloud computing centers. In: IEEE GLOBECOM. IEEE, New York, pp 1957–1962Google Scholar
  25. 25.
    Longo F, Ghosh R, Naik VK, Trivedi KS (2011) A scalable availability model for infrastructure-as-a-service cloud. In: IEEE/IFIP DSN. IEEE, New York, pp 335–346Google Scholar
  26. 26.
    Undheim A, Chilwan A, Heegaard P (2011) Differentiated availability in cloud computing slas. In: 2011 IEEE/ACM 12th international conference on grid computing. IEEE, New York, pp 129–136Google Scholar
  27. 27.
    Zhang Q, Zhani MF, Jabri M, Boutaba R (2014) Venice: reliable virtual data center embedding in clouds. In: IEEE INFOCOM 2014-IEEE conference on computer communications. IEEE, New York, pp 289–297Google Scholar
  28. 28.
    Wang W, Chen H, Chen X (2012) An availability-aware virtual machine placement approach for dynamic scaling of cloud applications. In: 2012 9th international conference on ubiquitous intelligence and computing and 9th international conference on autonomic and trusted computing (UIC/ATC). IEEE, New York, pp 509–516Google Scholar
  29. 29.
    Casalicchio E, Menascé DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals. In: Proceedings of the 2013 ACM cloud and autonomic computing conference. ACM, p 1Google Scholar
  30. 30.
    Carey JE, Jones B, Rajagopal A, Rossiter RL (2018) Resource allocation in high availability (ha) systems. US Patent App. 15/241,953Google Scholar
  31. 31.
    Heidari P, Hormati M, Toeroe M, Al Ahmad Y, Khendek F (2015) Integrating open saf high availability solution with open stack. In: 2015 IEEE world congress on services (SERVICES). IEEE, New York, pp 229–236Google Scholar
  32. 32.
    Kanso A, Khendek F, Toeroe M (2012) Configuration based service availability analysis of AMF managed systems. EP2684128A1, US8738968, US20120233501Google Scholar
  33. 33.
    Kanso A, Toeroe M, Khendek F (2013) Automating service availability analysis: an application to a highly available media-streaming service. In: 2013 IEEE 7th international conference on software security and reliability-companion (SERE-C), pp 94–101.

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Glauco Estácio Gonçalves
    • 1
  • Patricia Takako Endo
    • 2
    Email author
  • Moises Rodrigues
    • 3
  • Djamel H. Sadok
    • 3
  • Judith Kelner
    • 3
  • Calin Curescu
    • 4
  1. 1.Universidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Universidade de PernambucoRecifeBrazil
  3. 3.Universidade Federal de PernambucoRecifeBrazil
  4. 4.Ericsson ResearchLundSweden

Personalised recommendations