Advertisement

Computing

, Volume 101, Issue 9, pp 1241–1264 | Cite as

Optimal torus exploration by oblivious robots

  • Stéphane DevismesEmail author
  • Anissa Lamani
  • Franck Petit
  • Sébastien Tixeuil
Article
  • 42 Downloads

Abstract

We deal with a team of autonomous robots that are endowed with motion actuators and visibility sensors. Those robots are weak and evolve in a discrete environment. By weak, we mean that they are anonymous, uniform, unable to explicitly communicate, and oblivious. We first show that it is impossible to solve the terminating exploration of a simple torus of arbitrary size with less than 4 or 5 such robots, respectively depending on whether the algorithm is probabilistic or deterministic. Next, we propose in the SSYNC model a probabilistic solution for the terminating exploration of torus-shaped networks of size \(\ell \times L\), where \(7 \le \ell \le L\), by a team of 4 such weak robots. So, this algorithm is optimal w.r.t. the number of robots.

Keywords

Robot Torus Exploration Obliviousness 

Mathematics Subject Classification

68W15 

References

  1. 1.
    Baldoni R, Bonnet F, Milani A, Raynal M (2008) Anonymous graph exploration without collision by mobile robots. Inf Process Lett 109(2):98–103MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonnet F, Défago X, Petit F, Potop-Butucaru M, Tixeuil S (2014) Discovering and assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE SRDS workshops, workshop on self-organization in swarm of robots, pp 50–59Google Scholar
  3. 3.
    Chalopin J, Flocchini P, Mans B, Santoro N (2010) Network exploration by silent and oblivious robots. In: WG, pp 208–219Google Scholar
  4. 4.
    D’Angelo G, Di Stefano G, Navarra A, Nisse N, Suchan K (2013) A unified approach for different tasks on rings in robot-based computing systems. In: IPDPS workshops, pp 667–676Google Scholar
  5. 5.
    D’Angelo G, Navarra A, Nisse N (2014) Gathering and exclusive searching on rings under minimal assumptions. In: ICDCN, pp 149–164Google Scholar
  6. 6.
    Devismes S, Lamani A, Petit F, Raymond P, Tixeuil S (2012) Optimal grid exploration by asynchronous oblivious robots. In: SSS, pp 64–76Google Scholar
  7. 7.
    Devismes S, Petit F, Tixeuil S (2013) Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theor Comput Sci 498:10–27MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Flocchini P, Ilcinkas D, Pelc A, Santoro N (2010) Remembering without memory: tree exploration by asynchronous oblivious robots. Theor Comput Sci 411(14–15):1583–1598MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Flocchini P, Ilcinkas D, Pelc A, Santoro N (2013) Computing without communicating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3):562–583MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Flocchini P, Prencipe G, Santoro N (2012) Distributed computing by oblivious mobile robots. Synthesis lectures on distributed computing theory. Morgan & Claypool Publishers, San RafaelzbMATHGoogle Scholar
  11. 11.
    Klasing R, Kosowski A, Navarra A (2010) Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor Comput Sci 411(34–36):3235–3246MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lamani A, Potop-Butucaru M, Tixeuil S (2010) Optimal deterministic ring exploration with oblivious asynchronous robots. In: SIROCCO, pp 183–196Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Stéphane Devismes
    • 1
    Email author
  • Anissa Lamani
    • 2
  • Franck Petit
    • 3
  • Sébastien Tixeuil
    • 3
  1. 1.VERIMAG, Université Grenoble AlpesGrenobleFrance
  2. 2.Kyushu UniversityFukuokaJapan
  3. 3.LIP6UPMC Sorbonne UniversitésParisFrance

Personalised recommendations