Computing

, Volume 96, Issue 10, pp 951–973 | Cite as

Generalized integer transform based reversible watermarking algorithm using efficient location map encoding and adaptive thresholding

Article

Abstract

A novel algorithm that improves a generalized integer transform based reversible watermarking scheme is proposed in this paper. In our proposed algorithm, two main improvements have been achieved: adaptive thresholding and efficient location map encoding. With adaptive thresholding, suitable threshold \(t\) is selected adaptively, which ensures enough embedding capacity for the watermark while keeps the distortion introduced as low as possible. This modification is influential as an unsuitable threshold can lead to insufficient space for the watermark or even degrade the visual quality of the image. Moreover, efficient location map encoding helps in reducing the location map size, which down to 0.4 of the one unmodified in average. Therefore, more capacity is available for embedding as there is lesser overhead information. Overall, it provides more embedding capacity whereas improves the visual quality of the embedded image.

Keywords

Generalized integer transform Location map Reversible watermarking Threshold 

Mathematics Subject Classification

62H35 68U10 94A08 68P25 

Notes

Acknowledgments

The authors would like to thank the referees for their valuable comments. This research was supported in part by the Research Committee of the University of Macau and the Science and Technology Development Fund of Macau SAR (Project No. 034/2010/A2).

References

  1. 1.
    Agrawal R, Srikant R (2000) Privacy-preserving data mining. SIGMOD Rec 29:439–450CrossRefGoogle Scholar
  2. 2.
    Fridrich J et al (2001) Invertible authentication watermark for JPEG images. In: Proceedings of the international conference on information technology: coding and computing, 2001, pp 223–227Google Scholar
  3. 3.
    Fridrich J et al (2002) Lossless data embedding-new paradigm in digital watermarking. EURASIP J Appl Signal Process 2002:185–196CrossRefMATHGoogle Scholar
  4. 4.
    Kalker T, Willems FMJ (2002) Capacity bounds and constructions for reversible data-hiding. In: 14th international conference on digital signal processing, 2002. DSP 2002, vol 1, pp 71–76Google Scholar
  5. 5.
    Kamstra et al (2004) Wavelet techniques for reversible data embedding into images. Centrum voor Wiskunde en Informatica, Amsterdam, PAYS-BASGoogle Scholar
  6. 6.
    Celik MU et al (2005) Lossless generalized-LSB data embedding. In: IEEE transactions on image processing, vol 14, pp 253–266Google Scholar
  7. 7.
    Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques and sorting. In: IEEE transactions on image processing, vol 14, pp 2082–2090Google Scholar
  8. 8.
    Jun T (2003) Reversible data embedding using a difference expansion. In: IEEE transactions on circuits and systems for video technology, vol 13, pp 890–896Google Scholar
  9. 9.
    Alattar AM (2003) Reversible watermark using difference expansion of triplets. In: Proceedings of international conference on image processing, ICIP 2003, vol 1, pp I-501–504Google Scholar
  10. 10.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. In: IEEE transactions on image processing, vol 13, pp 1147–1156Google Scholar
  11. 11.
    Alattar AM (2004) Reversible watermark using difference expansion of quads. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, 2004 (ICASSP ’04), vol 3, pp iii-377–380Google Scholar
  12. 12.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. In: IEEE transactions on image processing, vol 16, pp 721–730Google Scholar
  13. 13.
    Shaowei W et al (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15:721–724CrossRefGoogle Scholar
  14. 14.
    Zhicheng N et al (2006) Reversible data hiding. In: IEEE transactions on circuits and systems for video technology, vol 16, pp 354–362Google Scholar
  15. 15.
    Xuan GS, Yao YQ, Ni Q, Yang Z, Gao J, Chai P (2006) Lossless data hiding using histogram shifting method based on integer wavelets. In: Presented at the LNCS. International workshop digital watermarking, Jeju Island, KoreaGoogle Scholar
  16. 16.
    Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modification. In: Presented at the IEICE electron expressGoogle Scholar
  17. 17.
    Wei-Liang T et al (2009) Reversible data hiding based on histogram modification of pixel differences. In: IEEE transactions on circuits and systems for video technology, vol 19, pp 906–910Google Scholar
  18. 18.
    Lixin L et al (2010) Reversible image watermarking using interpolation technique. In: IEEE transactions on information forensics and security, vol 5, pp 187–193Google Scholar
  19. 19.
    Shi YQ et al (2004) Lossless data hiding: fundamentals, algorithms and applications. In: Proceedings of the 2004 international symposium on circuits and systems, 2004. ISCAS ’04, vol 2, pp II-33–36Google Scholar
  20. 20.
    Bin Z et al (2010) A near reversible image watermarking algorithm. In: International conference on machine learning and cybernetics (ICMLC), vol 2010, pp 2824–2828Google Scholar
  21. 21.
    Xiang W et al (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17:567–570CrossRefGoogle Scholar
  22. 22.
    Skretting K et al (1999) Improved Huffman coding using recursive splitting. In: NORSIG 1999. Proceedings of Norwegian signal processing symposium, Asker, NorwayGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceUniversity of MacauMacau SARChina

Personalised recommendations