, Volume 96, Issue 9, pp 829–841 | Cite as

Source identification for mobile devices, based on wavelet transforms combined with sensor imperfections

  • A. L. Sandoval Orozco
  • D. M. Arenas González
  • J. Rosales Corripio
  • L. J. García VillalbaEmail author
  • J. C. Hernandez-Castro


One of the most relevant applications of digital image forensics is to accurately identify the device used for taking a given set of images, a problem called source identification. This paper studies recent developments in the field and proposes the mixture of two techniques (Sensor Imperfections and Wavelet Transforms) to get better source identification of images generated with mobile devices. Our results show that Sensor Imperfections and Wavelet Transforms can jointly serve as good forensic features to help trace the source camera of images produced by mobile phones. Furthermore, the model proposed here can also determine with high precision both the brand and model of the device.


Image forensics Source model identification Classification Wavelet Sensor imperfection Support vector machines (SVMs) 



This work was supported by the Agencia Española de Cooperación Internacional para el Desarrollo (AECID, Spain) through Acción Integrada MAEC-AECID MEDITERRÁNEO A1/037528/11.


  1. 1.
    Bayram S, Sencar HT, Memon N (2008) Classification of digital camera-models based on demosaicing artifacts. Digit Investig 5(1–2):49–59CrossRefGoogle Scholar
  2. 2.
    Boutell M, Luo, J (2004) Photo classification by integrating image content and camera metadata. In: Proceedings of the 17th international conference on pattern recognition, vol 4. IEEE Computer Society, pp 901–904. doi:  10.1109/ICPR.2004.1333918
  3. 3.
    Boutell M, Luo J (2005) Beyond pixels: exploiting camera metadata for photo classification. Pattern Recogn 38(6):935–946. doi: 10.1016/j.patcog.2004.11.013 CrossRefGoogle Scholar
  4. 4.
    Celiktutan O, Avcibas I, Sankur B, Ayerden NP, Capar C (2006) Source cell-phone identification. In: 2006 IEEE 14th signal processing and communications applications, pp 1–3. doi:  10.1109/SIU.2006.1659882
  5. 5.
    Chang C, Lin C (2001) LIBSVM: A library for support vector machines. Tech. rep. Software available at:
  6. 6.
    Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106CrossRefMathSciNetGoogle Scholar
  7. 7.
    Geradts ZJ, Bijhold J, Kieft M, Kurosawa K, Kuroki K, Saitoh N (2001) Methods for identification of images acquired with digital cameras. In: Proceedings of the SPIE, vol 4232. Spie, pp 505–512. doi:  10.1117/12.417569
  8. 8.
    Khannaa N, Mikkilinenib AK, Chiub GT, Allebacha JP, Delpa EJ (2006) Forensic classification of imaging sensor types. In: Rfc. Purdue University, USAGoogle Scholar
  9. 9.
    Luka J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inform Forensics Security 1(2):205–214. doi: 10.1109/TIFS.2006.873602 CrossRefGoogle Scholar
  10. 10.
    Mckay C, Swaminathan A, Gou H, Wu M (2008) Image acquisition forensics: forensic analysis to identify imaging source. In: IEEE international conference on acoustics speech and, signal processing, pp 1657–1660. doi:  10.1109/ICASSP.2008.4517945
  11. 11.
    Meng FJ, Kong XW, You XG (2008) Source camera identification based on image bi-coherence and wavelet features. In: Proceedings of the fourth annual IFIP WG 11.9 international conference on digital forensics. Kyoto, JapanGoogle Scholar
  12. 12.
    Ozparlak L, Avcibas I (2011) Differentiating between images using wavelet-based transforms: a comparative study. IEEE Trans Inform Forensics Security 6(4):1418–1431CrossRefGoogle Scholar
  13. 13.
    Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125CrossRefGoogle Scholar
  14. 14.
    Randen T, Husøy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310CrossRefGoogle Scholar
  15. 15.
    Baer R (2010) Resolution limits in digital photography: the looming end of the pixel wars - OSA technical digest (CD). In: Proceedings of the imaging systems. Optical Society of America, p ITuB3Google Scholar
  16. 16.
    Romero NL, Chornet VG, Cobos JS, Carot AS, Centellas FC, Mendez MC (2008) Recovery of descriptive information in images from digital libraries by means of EXIF metadata. Library Hi Tech 26(2):302–315. doi: 10.1108/07378830810880388 CrossRefGoogle Scholar
  17. 17.
    Tesic J (2005) Metadata practices for consumer photos. IEEE Multimed 12(3):86–92. doi: 10.1109/MMUL.2005.50 CrossRefGoogle Scholar
  18. 18.
    Tsai MJ, Lai CL, Liu J (2007) Camera/mobile phone source identification for digital forensics. In: Proceedings of the IEEE international conference on acoustics speech and signal processing ICASSP 07, pp II-221-II-224Google Scholar
  19. 19.
    Van Lanh T, Chong KS, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. IEEE Int Conf Multimed Expo 2007:16–19. doi: 10.1109/ICME.2007.4284575 Google Scholar
  20. 20.
    Wang B, Guo Y, Kong X, Meng F (2009) Source camera identification forensics based on wavelet features. In: Proceedings of the international conference on intelligent information hiding and multimedia signal processing, vol 0. IEEE Computer Society, Los Alamitos, pp 702–705Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • A. L. Sandoval Orozco
    • 1
  • D. M. Arenas González
    • 1
  • J. Rosales Corripio
    • 1
  • L. J. García Villalba
    • 1
    Email author
  • J. C. Hernandez-Castro
    • 2
  1. 1.Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), School of Computer Science, Office 431Universidad Complutense de Madrid (UCM)MadridSpain
  2. 2.School of Computing, Office S129AUniversity of KentCanterburyUK

Personalised recommendations