Computing

, Volume 94, Issue 8–10, pp 763–782 | Cite as

Asynchronous privacy-preserving iterative computation on peer-to-peer networks

  • J. A. M. Naranjo
  • L. G. Casado
  • Márk Jelasity
Article

Abstract

Privacy preserving algorithms allow several participants to compute a global function collaboratively without revealing local information to each other. Examples of applications include trust management, collaborative filtering, and ranking algorithms such as PageRank. Most solutions that can be proven to be privacy preserving theoretically are not appropriate for highly unreliable, large scale, distributed environments such as peer-to-peer (P2P) networks because they either require centralized components, or a high degree of synchronism among the participants. At the same time, in P2P networks privacy preservation is becoming a key requirement. Here, we propose an asynchronous privacy preserving communication layer for an important class of iterative computations in P2P networks, where each peer periodically computes a linear combination of data stored at its neighbors. Our algorithm tolerates realistic rates of message drop and delay, and node churn, and has a low communication overhead. We perform simulation experiments to compare our algorithm to related work. The problem we use as an example is power iteration (a method used to calculate the dominant eigenvector of a matrix), since eigenvector computation is at the core of several practical applications. We demonstrate that our novel algorithm also converges in the presence of realistic node churn, message drop rates and message delay, even when previous synchronized solutions are able to make almost no progress.

Keywords

Asynchrony Churn Power iteration Privacy preservation P2P 

Mathematics Subject Classification

94A62 68M14 68M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal CC, Yu PS (2008) A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal CC, Yu PS, Elmagarmid AK (eds) Privacy-preserving data mining. The Kluwer International Series on Advances in Database Systems, vol 34, pp 11–52. Springer, New York. doi:10.1007/978-0-387-70992-5_2
  2. 2.
    Agrawal R, Srikant R (2000) Privacy-preserving data mining. SIGMOD Rec 29(2): 439–450. doi:10.1145/335191.335438 CrossRefGoogle Scholar
  3. 3.
    Bai, Z, Demmel, J, Dongarra, J, Ruhe, A, van der Vorst, H (eds) (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, PhiladelphiaMATHGoogle Scholar
  4. 4.
    Bianchini M, Gori M, Scarselli F (2005) Inside pagerank. ACM Trans Int Technol 5(1): 92–128. doi:10.1145/1052934.1052938 CrossRefGoogle Scholar
  5. 5.
    Bickson D, Dolev D, Bezman G, Pinkas B (2008) Peer-to-peer secure multi-party numerical computation. In: IEEE international conference on peer-to-peer computing. IEEE Computer Society, pp 257–266. doi:10.1109/P2P.2008.22
  6. 6.
    Bickson D, Malkhi D (2008) A unifying framework of rating users and data items in peer-to-peer and social networks. Peer-to-Peer Netw Appl 1(2): 93–103. doi:10.1007/s12083-008-0008-4 CrossRefGoogle Scholar
  7. 7.
    Bickson D, Reinman T, Dolev D, Pinkas B (2010) Peer-to-peer secure multi-party numerical computation facing malicious adversaries. Peer-to-Peer Netw Appl 3(2): 129–144. doi:10.1007/s12083-009-0051-9 CrossRefGoogle Scholar
  8. 8.
    Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY (2002) Tools for privacy preserving distributed data mining. SIGKDD Explor Newsl 4(2): 28–34. doi:10.1145/772862.772867 CrossRefGoogle Scholar
  9. 9.
    Das K, Bhaduri K, Kargupta H (2011) Multi-objective optimization based privacy preserving distributed data mining in peer-to-peer networks. Peer-to-Peer Netw Appl 4(2): 192–209. doi:10.1007/s12083-010-0075-1 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Datta S, Bhaduri K, Giannella C, Wolff R, Kargupta H (2006) Distributed data mining in peer-to-peer networks. IEEE Int Comput 10(4): 18–26. doi:10.1109/MIC.2006.74 CrossRefGoogle Scholar
  11. 11.
    Frommer A, Szyld DB (2000) On asynchronous iterations. J Comput Appl Math 123(1–2): 201–216. doi:10.1016/S0377-0427(00)00409-X MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Goldreich O, Micali S, Wigderson A (1987) How to play any mental game. In: Proceedings of the nineteenth annual ACM symposium on theory of computing, STOC ’87. ACM, New York, pp 218–229. doi:10.1145/28395.28420
  13. 13.
    Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University PressGoogle Scholar
  14. 14.
    He W, Liu X, Nguyen HV, Nahrstedt K, Abdelzaher T (2011) PDA: privacy-preserving data aggregation for information collection. ACM Trans Sen Netw 8(1): 6:1–6:22. doi:10.1145/1993042.1993048 CrossRefGoogle Scholar
  15. 15.
    Jelasity M, Canright G, Engø-Monsen K (2007) Asynchronous distributed power iteration with gossip-based normalization. In: Kermarrec AM, Bougé L, Priol T (eds) Euro-Par 2007. Lecture notes in computer science, vol 4641. Springer, Berlin, pp 514–525. doi:10.1007/978-3-540-74466-5_55
  16. 16.
    Jelasity M, Montresor A, Babaoglu O (2005) Gossip-based aggregation in large dynamic networks. ACM Trans Comput Syst 23(3): 219–252. doi:10.1145/1082469.1082470 CrossRefGoogle Scholar
  17. 17.
    Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The eigentrust algorithm for reputation management in p2p networks. In: Proceedings of the 12th international conference on World Wide Web (WWW’03). ACM, New York, pp 640–651. doi:10.1145/775152.775242
  18. 18.
    Kempe D, Dobra A, Gehrke J (2003) Gossip-based computation of aggregate information. In: Proceedings of the 44th annual IEEE symposium on Foundations of Computer Science (FOCS’03). IEEE Computer Society, pp 482–491. doi:10.1109/SFCS.2003.1238221
  19. 19.
    Kempe D, McSherry F (2004) A decentralized algorithm for spectral analysis. In: Proceedings of the 36th ACM symposium on theory of computing (STOC’04). ACM, New York, pp 561–568. doi:10.1145/1007352.1007438
  20. 20.
    Lindell Y, Pinkas B (2002) Privacy preserving data mining. J Cryptol 15(3): 177–206. doi:10.1007/s00145-001-0019-2 MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lubachevsky B, Mitra D (1986) A chaotic asynchronous algorithm for computing the fixed point of a nonnegative matrix of unit radius. J ACM 33(1): 130–150. doi:10.1145/4904.4801 MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Maurer U (2006) Secure multi-party computation made simple. Discrete Appl Math 154(2): 370–381. doi:10.1016/j.dam.2005.03.020 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Montresor A, Jelasity M (2009) Peersim: a scalable P2P simulator. In: Proceedings of the 9th IEEE international conference on Peer-to-Peer Computing (P2P 2009). IEEE, Seattle, pp 99–100. doi:10.1109/P2P.2009.5284506. Extended abstract
  24. 24.
    Mosk-Aoyama D, Shah D (2008) Fast distributed algorithms for computing separable functions. IEEE Trans Inf Theory 54(7): 2997–3007. doi:10.1109/TIT.2008.924648 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Parreira JX, Donato D, Michel S, Weikum G (2006) Efficient and decentralized PageRank approximation in a peer-to-peer web search network. In: Proceedings of the 32nd international conference on Very large data bases (VLDB’2006). VLDB Endowment, pp 415–426Google Scholar
  26. 26.
    van Renesse R, Birman KP, Vogels W (2003) Astrolabe: a robust and scalable technology for distributed system monitoring, management, and data mining. ACM Trans Comput Syst 21(2): 164–206. doi:10.1145/762483.762485 CrossRefGoogle Scholar
  27. 27.
    Shamir A (1979) How to share a secret. Commun ACM 22(11): 612–613. doi:10.1145/359168.359176 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Stutzbach D, Rejaie R (2006) Understanding churn in peer-to-peer networks. In: Proceedings of the 6th ACM SIGCOMM conference on Internet measurement (IMC’06). ACM, New York, pp 189–202. doi:10.1145/1177080.1177105
  29. 29.
    Yao AC (1982) Protocols for secure computations. In: Proceedings of the 23rd annual symposium on Foundations of Computer Science (FOCS), pp 160–164. doi:10.1109/SFCS.1982.38
  30. 30.
    Yao ACC (1986) How to generate and exchange secrets. In: Proceedings of 27th annual symposium on Foundations of Computer Science (FOCS), pp 162–167. doi:10.1109/SFCS.1986.25

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. A. M. Naranjo
    • 1
  • L. G. Casado
    • 1
  • Márk Jelasity
    • 2
  1. 1.Department of Computer Architecture and ElectronicsUniversity of AlmeríaAlmeríaSpain
  2. 2.University of Szeged, and Hungarian Academy of Sciences, Research Group on AISzegedHungary

Personalised recommendations