Advertisement

Computing

, Volume 94, Issue 6, pp 521–539 | Cite as

Nanoinformatics: developing new computing applications for nanomedicine

  • Victor Maojo
  • Martin Fritts
  • Fernando Martin-Sanchez
  • Diana De la Iglesia
  • Raul E. Cachau
  • Miguel Garcia-Remesal
  • Jose Crespo
  • Joyce A. Mitchell
  • Alberto Anguita
  • Nathan Baker
  • Jose Maria Barreiro
  • Sonia E. Benitez
  • Guillermo De la Calle
  • Julio C. Facelli
  • Peter Ghazal
  • Antoine Geissbuhler
  • Fernando Gonzalez-Nilo
  • Norbert Graf
  • Pierre Grangeat
  • Isabel Hermosilla
  • Rada Hussein
  • Josipa Kern
  • Sabine Koch
  • Yannick Legre
  • Victoria Lopez-Alonso
  • Guillermo Lopez-Campos
  • Luciano Milanesi
  • Vassilis Moustakis
  • Cristian Munteanu
  • Paula Otero
  • Alejandro Pazos
  • David Perez-Rey
  • George Potamias
  • Ferran Sanz
  • Casimir Kulikowski
Open Access
Article

Abstract

Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended “nanotype” to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others.

Keywords

Nanoinformatics Computing Nanotechnology Bioinformatics Medical Informatics Nanomedicine 

Mathematics Subject Classification (2000)

68 92 

Notes

Acknowledgments

This work has been partially funded by the European Commission (the ACTION-Grid Support Action, FP7-224176) and the Spanish Ministry of Science and Innovation (FIS/AES PS09/00069 and RETICS COMBIOMED RD07/0067/0006).

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Altman RB (1998) Bioinformatics in support of molecular medicine. Rev Proc AMIA Symp 1998: 53–61Google Scholar
  2. 2.
    Kulikowski CA (2002) The micro-macro spectrum of medical informatics challenges: from molecular medicine to transforming health care in a globalizing society. Methods Inf Med 41(1): 20–24Google Scholar
  3. 3.
    Kohane IS (2000) Bioinformatics and clinical informatics: the imperative to collaborate. J Am Med Inform Assoc 7(5): 512–516CrossRefGoogle Scholar
  4. 4.
    Maojo V, Kulikowski CA (2003) Bioinformatics and medical informatics: collaborations on the road to genomic medicine?. J Am Med Inform Assoc 10(6): 515–522CrossRefGoogle Scholar
  5. 5.
    Maojo V, Iakovidis I, Martin-Sanchez F et al (2001) Medical informatics and bioinformatics: European efforts to facilitate synergy. J Biomed Inform 34(6): 423–427CrossRefGoogle Scholar
  6. 6.
    Martin-Sanchez F, Iakovidis I, Nørager S, Maojo V, de Groen P, Van der Lei J, Jones T, Abraham-Fuchs K, Apweiler R, Babic A, Baud R, Breton V, Cinquin P, Doupi P, Dugas M, Eils R, Engelbrecht R, Ghazal P, Jehenson P, Kulikowski C, Lampe K, De Moor G, Orphanoudakis S, Rossing N, Sarachan B, Sousa A, Spekowius G, Thireos G, Zahlmann G, Zvärovä J, Hermosilla I, Vicente FJ (2004) Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J Biomed Inform 37(1): 30–42CrossRefGoogle Scholar
  7. 7.
    Kulikowski C, Weiss S (1971) Computer-based Models of Glaucoma. Report no. 3, Department of Computer Science, Computers in Biomedicine. Rutgers University, New BrunswickGoogle Scholar
  8. 8.
    Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25): 2434–2443CrossRefGoogle Scholar
  9. 9.
    Doms A, Schroeder M (2005) GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Res 33:W783-6. http://www.gopubmed.org/. Accessed 14 November 2011Google Scholar
  10. 10.
    Maojo V, Garcia-Remesal M, de la Iglesia D, Crespo J, Perez-Rey D, Chiesa S, Fritts M, Kulikowski CA (2011) Nanoinformatics: developing advanced informatics applications for nanomedicine. In: Prokov A (ed) Intracellular delivery: fundamentals and applications (Fundamental Biomedical Technologies). Springer, NYGoogle Scholar
  11. 11.
    Maojo V, Martin-Sanchez F, Kulikowski C et al (2010) Nanoinformatics and DNA-based computing: catalyzing nanomedicine. Pediatr Res 67(5): 481–489CrossRefGoogle Scholar
  12. 12.
    Freitas RA (1999) Nanomedicine. Basic Capabilities, vol I. Landes Bioscience, Georgetown. http://www.nanomedicine.com/NMI.htm. Accessed June 2011
  13. 13.
    Freitas RA (2003) Nanomedicine. Biocompatibility, vol IIA. Landes Bioscience, Georgetown. http://www.nanomedicine.com/NMIIA.htm. Accessed June 2011
  14. 14.
    Jain K (2008) The handbook of Nanomedicine. Humana Press, NJ, pp, pp 161–192CrossRefGoogle Scholar
  15. 15.
    Thomas DG, Pappu RV, Baker NA (2011) NanoParticle Ontology for cancer nanotechnology research. J Biomed Inform 44(1): 59–74CrossRefGoogle Scholar
  16. 16.
    Rosse C, Mejino JVL (2003) A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform 36: 478–500CrossRefGoogle Scholar
  17. 17.
    Workshop on Nanoinformatics Strategies. National Science Foundation. Arlington, Virginia (2007). http://128.119.56.118/~nnn01/Workshop.html. Last access June 2011. Accessed Feb 2011
  18. 18.
    National Science Foundation (2010) Nanoinformatics 2010: a Collaborative Roadmaping Workshop. November 3–5, 2010. Arlington, Virginia (USA). http://nanotechinformatics.org/. Accessed Feb 2011
  19. 19.
    Baker NA, Fritts M, Guccione S et al (2009) Nanotechnology informatics white paper. US National Cancer Institute, BethesdaGoogle Scholar
  20. 20.
    Dela Iglesia D, Maojo V, Chiesa S et al (2011) International efforts in nanoinformatics research applied to nanomedicine. Methods Inf Med 50(1): 84–95CrossRefGoogle Scholar
  21. 21.
    Kiberstis P, Roberts L (2002) It’s not just the genes. Science 296(5568): 685CrossRefGoogle Scholar
  22. 22.
    National Human Genome Research Institute: (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470(7333): 204–213CrossRefGoogle Scholar
  23. 23.
    PubMed. U.S. National Library of Medicine. National Institutes of Health. http://www.ncbi.nlm.nih.gov/sites/entrez. Accessed Nov 2011
  24. 24.
    Gordon N, Sagman U (2003) Nanomedicine taxonomy. Canadian Institute of Health Research & Canadian NanoBusiness Alliance, CanadaGoogle Scholar
  25. 25.
    Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11): 1251–1255CrossRefGoogle Scholar
  26. 26.
    De la Calle G, García-Remesal M, Chiesa S et al (2009) BIRI: a new approach for automatically discovering and indexing available public bioinformatics resources from the literature. BMC Bioinform 10:320Google Scholar
  27. 27.
  28. 28.
    Viceconti M, Clapworthy G, Van Sint Jan S (2008) The Virtual Physiological Human—a European initiative for in silico human modelling. J Physiol Sci 58(7): 441–446CrossRefGoogle Scholar
  29. 29.
    Network for Computational Nanotechnology, National Science Foundation (2009) NanoHub. http://nanohub.org/. Accessed June 2011
  30. 30.
    CaNanoLab. National Cancer Institute. National Institutes of Health. https://cananolab.nci.nih.gov/caNanoLab/ . Accessed Mar 2011Google Scholar
  31. 31.
    Collaboratory for Structural Nanobiology (CSN). http://csn.ncifcrf.gov/. Accessed June 2011
  32. 32.
    Munteanu CR (2011) Convergence of bioinformatics with nanotechnology and artificial intelligence technologies. In: Munteanu CR (ed) Current bioinformatics, special issue, vol 6, no 2. Bentham Science Publishers Ltd., Sharjah, p 144Google Scholar
  33. 33.
    Gerstein M, Seringhaus M, Fields S (2007) Structured digital abstract makes text mining easy. Nature 447(7141): 142CrossRefGoogle Scholar
  34. 34.
    Maojo V, Crespo J, García-Remesal M et al (2011) Biomedical Ontologies: toward scientific debate. Methods Inf Med 50(3): 203–216CrossRefGoogle Scholar
  35. 35.
    Bewick S, Yang R, Zhang M (2009) Complex mathematical models of biology at the nanoscale. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 1(6): 650–659CrossRefGoogle Scholar
  36. 36.
    O’Donoghue SI, Goodsell DS, Frangakis AS et al (2010) Visualization of macromolecular structures. Nat Methods 7(3): S42–S55CrossRefGoogle Scholar
  37. 37.
    Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12): 980CrossRefGoogle Scholar
  38. 38.
    Maojo V, Martín-Sänchez F et al (2010) The ACTION-Grid White Paper: Linking Biomedical Informatics, Grid Computing and Nanomedicine. http://www.action-grid.eu/index.php?url=whitepaper. Accessed Nov 2011

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Victor Maojo
    • 1
  • Martin Fritts
    • 2
  • Fernando Martin-Sanchez
    • 3
  • Diana De la Iglesia
    • 1
  • Raul E. Cachau
    • 4
  • Miguel Garcia-Remesal
    • 1
  • Jose Crespo
    • 1
  • Joyce A. Mitchell
    • 5
  • Alberto Anguita
    • 1
  • Nathan Baker
    • 6
  • Jose Maria Barreiro
    • 1
  • Sonia E. Benitez
    • 7
  • Guillermo De la Calle
    • 1
  • Julio C. Facelli
    • 5
  • Peter Ghazal
    • 8
  • Antoine Geissbuhler
    • 9
  • Fernando Gonzalez-Nilo
    • 10
  • Norbert Graf
    • 11
  • Pierre Grangeat
    • 12
  • Isabel Hermosilla
    • 13
  • Rada Hussein
    • 14
  • Josipa Kern
    • 15
  • Sabine Koch
    • 16
  • Yannick Legre
    • 17
  • Victoria Lopez-Alonso
    • 13
  • Guillermo Lopez-Campos
    • 13
  • Luciano Milanesi
    • 18
  • Vassilis Moustakis
    • 19
    • 20
  • Cristian Munteanu
    • 21
  • Paula Otero
    • 7
  • Alejandro Pazos
    • 21
  • David Perez-Rey
    • 1
  • George Potamias
    • 20
  • Ferran Sanz
    • 22
  • Casimir Kulikowski
    • 23
  1. 1.Biomedical Informatics Group, Departamento de Inteligencia Artificial, Faculdad de InformáticaUniversidad Politécnica de MadridMadridSpain
  2. 2.SAIC-Frederick Inc., National Cancer Institute at FrederickFrederickUSA
  3. 3.Health and Biomedical Informatics Research Laboratory Medical School-IBESThe University of MelbourneParkvilleAustralia
  4. 4.Advanced Biomedical Computing CenterNational Cancer Institute, SAIC-Frederick Inc.FrederickUSA
  5. 5.Biomedical Informatics DepartmentUniversity of UtahSalt Lake CityUSA
  6. 6.Pacific Northwest National LaboratoryRichlandUSA
  7. 7.Department of Medical InformaticsHospital Italiano de Buenos AiresBuenos AiresArgentina
  8. 8.Division of Pathway Medicine and Centre for Systems Biology EdinburghUniversity of EdinburghEdinburghUK
  9. 9.Division of Medical InformaticsUniversity Hospitals of GenevaGenevaSwitzerland
  10. 10.Center for Bioinformatics and Molecular SimulationUniversidad de TalcaTalcaChile
  11. 11.Department of Pediatric Oncology and HematologyUniversity of the SaarlandHomburgGermany
  12. 12.Laboratoire d’Electronique et de Technologie de l’Information (LETI), MINATEC CampusCommissariat à l’Energie Atomique et aux Energies Alternatives (CEA)GrenobleFrance
  13. 13.Department of Medical BioinformaticsInstitute of Health “Carlos III”MadridSpain
  14. 14.Information Technology InstituteMinistry of Communications and Information TechnologyCairoEgypt
  15. 15.Department of Medical Statistics, Epidemiology and Medical Informatics, Andrija Stampar School of Public HealthZagreb University Medical SchoolZagrebCroatia
  16. 16.Health Informatics Centre, Department of Learning, Informatics, Management and EthicsKarolinska InstitutetStockholmSweden
  17. 17.Health Grid OrganizationClermont-FerrandFrance
  18. 18.Institute of Biomedical TechnologyNational Research CouncilMilanItaly
  19. 19.Technical University of CreteChania, CreteGreece
  20. 20.Institute of Computer ScienceFORTH, Heraklion, CreteGreece
  21. 21.Department of Information and Communication TechnologiesUniversity of A CoruñaA CoruñaSpain
  22. 22.Biomedical Informatics Research Programme (GRIB), IMIMUniversitat Pompeu FabraBarcelonaSpain
  23. 23.Department of Computer Science, RutgersThe State University of New JerseyNewarkUSA

Personalised recommendations