Computing

, Volume 93, Issue 2–4, pp 147–169 | Cite as

The N-intertwined SIS epidemic network model

Open Access
Article

Abstract

Serious epidemics, both in cyber space as well as in our real world, are expected to occur with high probability, which justifies investigations in virus spread models in (contact) networks. The N-intertwined virus spread model of the SIS-type is introduced as a promising and analytically tractable model of which the steady-state behavior is fairly completely determined. Compared to the exact SIS Markov model, the N-intertwined model makes only one approximation of a mean-field kind that results in upper bounding the exact model for finite network size N and improves in accuracy with N. We review many properties theoretically, thereby showing, besides the flexibility to extend the model into an entire heterogeneous setting, that much insight can be gained that is hidden in the exact Markov model.

Keywords

Epidemics Networks Robustness Mean-field approximation 

Mathematics Subject Classification (2000)

05C50 05C82 37H20 46N10 46N30 60J28 

References

  1. 1.
    Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Asavathiratham C (2000) The influence model: a tractable representation for the dynamics of networked markov chains. Ph.D thesis, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  3. 3.
    Bailey NTJ (1975) The mathematical theory of infectious diseases and its applications, 2nd edn. Charlin Griffin & Company, LondonMATHGoogle Scholar
  4. 4.
    Barrat A, Bartelemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  5. 5.
    Biggs N (1996) Algebraic graph theory, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Castellano C, Pastor-Satorras R (2010) Thresholds for epidemic spreading in networks. Phys Rev Lett 105: 218701CrossRefGoogle Scholar
  7. 7.
    Chakrabarti D, Wang Y, Wang C, Leskovec J, Faloutsos C (2008) Epidemic thresholds in real networks. ACM Trans Inf Syst Secur (TISSEC) 10(4): 1–26CrossRefGoogle Scholar
  8. 8.
    Chen Y, Paul G, Havlin S, Liljeros F, Stanley HE (2008) Finding a better immunization strategy. Phys Rev Lett 101: 058701CrossRefGoogle Scholar
  9. 9.
    Cvetković DM, Doob M, Sachs H (1995) Spectra of fraphs, theory and applications, 3rd edn. Johann Ambrosius Barth Verlag, HeidelbergGoogle Scholar
  10. 10.
    Daley DJ, Gani J (1999) Epidemic modelling: an introduction. Cambridge University Press, CambridgeMATHGoogle Scholar
  11. 11.
    Darabi Sahneh F, Scoglio C (2011) Epidemic spread in human networks. In: 50th IEEE conference on decision and control, Orlando, December 2011. arXiv:1107.2464v1Google Scholar
  12. 12.
    Durrett R (2010) Some features of the spread of epidemics and information on a random graph. Proc Natl Acad Sci USA (PNAS) 107(10): 4491–4498CrossRefGoogle Scholar
  13. 13.
    Ganesh A, Massoulié L, Towsley D (2005) The effect of network topology on the spread of epidemics. In: IEEE INFOCOM05, San FranciscoGoogle Scholar
  14. 14.
    Garetto M, Gong W, Towsley D (2003) Modeling malware spreading dynamics. In: IEEE INFOCOM’03, San Francisco, April 2003Google Scholar
  15. 15.
    Gómez S, Arenas A, Borge-Holthoefer J, Meloni S, Moreno Y (2010) Discrete-time Markov chain approach to contact-based disease spreading in complex networks. Europhys Lett (EPL) 89: 38009CrossRefGoogle Scholar
  16. 16.
    Gourdin E, Omic J, Van Mieghem P (2011) Optimization of network protection against virus spread. In: 8th international workshop on design of reliable communication networks (DRCN 2011), Krakow, 10–12 October 2011Google Scholar
  17. 17.
    Hill AL, Rand DG, Nowak MA, Christakis NA (2010) Emotions as infectious diseases in a large social network: the SISa model. Proc Royal Soc B 277: 3827–3835CrossRefGoogle Scholar
  18. 18.
    Kephart JO, White SR (1991) Direct-graph epidemiological models of computer viruses. In: Proceedings of the 1991 IEEE computer society symposium on research in security and privacy, pp 343–359, May 1991Google Scholar
  19. 19.
    Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc Royal Soc A 115: 700–721MATHCrossRefGoogle Scholar
  20. 20.
    Kooij RE, Schumm P, Scoglio C, Youssef M (2009) A new metric for robustness with respect to virus spread. In: Networking 2009, LNCS 5550, pp 562–572Google Scholar
  21. 21.
    Omic J (2010) Epidemics in networks: modeling, optimization and security games. Ph.D thesis, September 2010. http://repository.tudelft.nl/. Accessed Sept 2010
  22. 22.
    Omic J, Kooij RE, Van Mieghem P (2007) Virus spread in complete bi-partite graphs. In: Bionetics 2007, Budapest, 10–13 December 2007Google Scholar
  23. 23.
    Omic J, Kooij RE, Van Mieghem P (2009) Heterogeneous protection in regular and complete bi-partite networks. In: IFIP networking 2009, Aachen, 11–15 May 2009Google Scholar
  24. 24.
    Omic J, Martin Hernandez J, Van Mieghem P (2010) Network protection against worms and cascading failures using modularity partitioning. In: 22nd international teletraffic congress (ITC 22), Amsterdam, 7–9 September 2010Google Scholar
  25. 25.
    Omic J, Van Mieghem P (2009) Epidemic spreading in networks—variance of the number of infected nodes. Delft University of Technology, report20090707. http://www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports
  26. 26.
    Omic J, Van Mieghem P, Orda A (2009) Game theory and computer viruses. In: IEEE Infocom09Google Scholar
  27. 27.
    Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14): 3200–3203CrossRefGoogle Scholar
  28. 28.
    Restrepo JG, Ott E, Hunt Brian R (2005) Onset of synchronization in large networks of coupled oscillators. Phys Rev E 71(036151): 1–12MathSciNetGoogle Scholar
  29. 29.
    Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143: 1–20MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Van Mieghem P (2006) Performance analysis of communications systems and networks. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  31. 31.
    Van Mieghem P (2011) Epidemic phase transition of the SIS-type in networks (submitted)Google Scholar
  32. 32.
    Van Mieghem P (2011) Graph spectra for complex networks. Cambridge University Press, CambridgeMATHGoogle Scholar
  33. 33.
    Van Mieghem P (2011) Viral conductance of a network (submitted)Google Scholar
  34. 34.
    Van Mieghem P, Ge G, Schumm P, Trajanovski S, Wang H (2010) Spectral graph analysis of modularity and assortativity. Phys Rev E 82: 056113CrossRefGoogle Scholar
  35. 35.
    Van Mieghem P, Omic J (2008) In-homogeneous virus spread in networks. Delft University of Technology, Report2008081. http://www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports
  36. 36.
    Van Mieghem P, Omic J, Kooij RE (2009) Virus spread in networks. IEEE/ACM Trans Netw 17(1): 1–14CrossRefGoogle Scholar
  37. 37.
    Van Mieghem P, Stevanović D, Kuipers FA, Li C, van de Bovenkamp R, Liu D, Wang H (2011) Decreasing the spectral radius of a graph by link removals. Phys Rev E 84(1): 016101CrossRefGoogle Scholar
  38. 38.
    Van Mieghem P, Wang H, Ge X, Tang S, Kuipers FA (2010) Influence of assortativity and degree-preserving rewiring on the spectra of networks. E Phys J B 76(4): 643–652MATHCrossRefGoogle Scholar
  39. 39.
    Wang H, Winterbach W, Van Mieghem P (2011) Assortativity of complementary graphs. Eur Phys J B (to appear)Google Scholar
  40. 40.
    Wang Y, Chakrabarti D, Wang C, Faloutsos C (2003) Epidemic spreading in real networks: an eigenvalue viewpoint. In: 22nd international symposium on reliable distributed systems (SRDS’03), IEEE computer, pp 25–34, October 2003Google Scholar
  41. 41.
    Wang Y, Wang C (2003) Modeling the effects of timing parameters on virus propagation. In: ACM workshop on rapid malcode (WORM’03), Washington DC, pp 61–66, 27 Oct 2003Google Scholar
  42. 42.
    Youssef M, Kooij RE, Scoglio C (2011) Viral conductance: quantifying the robustness of networks with respect to spread of epidemics. J Comput Science. doi:10.1016/j.jocs.2011.03.001
  43. 43.
    Youssef M, Scoglio C (2011) An individual-based approach to SIR epidemics in contact networks. J Theor Biol 283: 136–144CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations