, Volume 91, Issue 2, pp 169–215 | Cite as

Organisational adaptation of multi-agent systems in a peer-to-peer scenario

  • Jordi Campos
  • Marc Esteva
  • Maite López-Sánchez
  • Javier Morales
  • Maria Salamó


Organisations in multi-agent systems (MAS) have proven to be successful in regulating agent societies. Nevertheless, changes in agents’ behaviour or in the dynamics of the environment may lead to a poor fulfilment of the system’s purposes, and so the entire organisation needs to be adapted. In this paper we focus on endowing the organisation with adaptation capabilities, instead of expecting agents to be capable of adapting the organisation by themselves. We regard this organisational adaptation as an assisting service provided by what we call the Assistance Layer. Our generic Two Level Assisted MAS Architecture (2-LAMA) incorporates such a layer. We empirically evaluate this approach by means of an agent-based simulator we have developed for the P2P sharing network domain. This simulator implements 2-LAMA architecture and supports the comparison between different adaptation methods, as well as, with the standard BitTorrent protocol. In particular, we present two alternatives to perform norm adaptation and one method to adapt agents’ relationships. The results show improved performance and demonstrate that the cost of introducing an additional layer in charge of the system’s adaptation is lower than its benefits.


Adaptation Organisation Coordination Norms MAS CBR 

Mathematics Subject Classification (2000)

68T42 68T05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif Intell Commun 7: 39–59Google Scholar
  2. 2.
    Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2008) An abstract architecture for virtual organizations: the THOMAS project. Technical report, Grupo de Tecnología Informática-Inteligencia Artificial (GTI-IA), Universidad Politécnica de ValénciaGoogle Scholar
  3. 3.
    Artikis A, Kaponis D, Pitt J (2009) Dynamic Specifications of Norm-Governed Systems. In: Multi-agent systems: semantics and dynamics of organisational models. V. Dignum, IGI Global, pp 460–479Google Scholar
  4. 4.
    BitTorrentInc (2001) BitTorrent protocol specification.
  5. 5.
    Boissier O, Gâteau B (2007) Normative multi-agent organizations: modeling, support and control. In: Boella G, van der Torre L, Verhagen H (eds) Normative multi-agent systems. Dagstuhl Seminar Proceedings, vol 07122. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, pp 1–17Google Scholar
  6. 6.
    Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2009) Autonomic Electronic Institutions’ Self-Adaptation in Heterogeneous Agent Societies, vol 5368. Springer, New York, pp 18–35Google Scholar
  7. 7.
    Campos J, López-Sánchez M, Esteva M (2009) Assistance layer, a step forward in multi-agent systems coordination support. In: Eighth international conference on autonomous agents and multi-agent systems, pp 1301–1302Google Scholar
  8. 8.
    Campos J, López-Sánchez M, Esteva M (2009) Assistance layer in a p2p scenario. In: Engineering Societies in the Agents World X (ESAW’09). Lecture notes in artificial intelligence, vol 5881. Spinger, New York, pp 229–232Google Scholar
  9. 9.
    Campos J, López-Sánchez M, Esteva M (2009) Multi-Agent System adaptation in a peer-to-peer scenario. In: ACM SAC09-Agreement Technologies, pp 735–739Google Scholar
  10. 10.
    Campos J, López-Sánchez M, Esteva M, Morales J (2009) A simulator for a two layer MAS adaptation in P2P networks. In: WAT09-Workshop on Agreement TechnologiesGoogle Scholar
  11. 11.
    Campos J, López-Sánchez M, Esteva M, Novo A, Morales J (2009) 2-LAMA Architecture vs. BitTorrent protocol in a peer-to-peer scenario. In: Artificial Intelligence Research and Development-CCIA09, vol 202. IOS Press, pp 197–206Google Scholar
  12. 12.
    Campos J, López-Sánchez M, Rodríguez-Aguilar JA, Esteva M (2009) Formalising situatedness and adaptation in electronic institutions. In: Coordination, organizations, institutions, and norms in agent systems IV. Lecture notes in artificial intelligence (LNAI), vol 5428. Springer, New York, pp 126–139Google Scholar
  13. 13.
    Carley K (1995) Computational and mathematical organization theory: perspective and directions. Comput Math Organ Theory 1(1): 39–56CrossRefGoogle Scholar
  14. 14.
    Choffnes D, Bustamante F (2008) Taming the torrent: a practical approach to reducing cross-ISP traffic in peer-to-peer systems. SIGCOMM Comput Commun Rev 38(4): 363–374CrossRefGoogle Scholar
  15. 15.
    Costa ACR, Demazeau Y (1996) Toward a formal model of multi-agent systems with dynamic organizations. In: Proceedings of the international conference on multi-agent systems. MIT Press, KyotoGoogle Scholar
  16. 16.
    Savarimuthu BTR, Cranefield S (2009) A categorization of simulation works on norms. In: Normative multi-agent sysytems, Dagstuhl Seminar Proceedings, vol 09121. Leibniz, Germany, pp 39–58Google Scholar
  17. 17.
    Savarimuthu BTR, Cranefield S, Purvis M, Purvis M (2008) Role model based mechanism for norm emergence in artificial agent societies. In: LNCS—Proceedings of the coordination, organizations, institutions, and norms in agent systems III, vol 4870. Springer-Verlag, New York, pp 203–217Google Scholar
  18. 18.
    Deloach SA, Oyenan WH, Matson ET (2008) A capabilities-based model for adaptive organizations. Auton Agents Multi-Agent Syst 16(1): 13–56CrossRefGoogle Scholar
  19. 19.
    Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1: 269–271MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Esteva M (2003) Electronic Institutions: from specification to development. IIIA PhD, vol 19Google Scholar
  21. 21.
    Esteva M, Rodríguez-Aguilar JA, Sierra C, Garcia P, Arcos JL (2001) On the formal specifications of electronic institutions. In: Dignum F, Sierra C (eds) AgentLink. Lecture notes in computer science, vol 1991. Springer, New York, pp 126–147Google Scholar
  22. 22.
    Ferber J, Gutknecht O, Michel F (2004) From agents to organizations: an organizational view of multi-agent systems. In: Giorgini P, Müller JP, Odell J (eds) Agent-oriented software engineering IV. Springer, New York, pp 214–230CrossRefGoogle Scholar
  23. 23.
    García-Camino A, Rodríguez-Aguilar JA, Sierra C, Vasconcelos W (2009) Constraint rule-based programming of norms for electronic institutions. Auton Agents Multi-Agent Syst 18(1): 186–217CrossRefGoogle Scholar
  24. 24.
    Grizard A, Vercouter L, Stratulat T, Muller G (2007) A peer-to-peer normative system to achieve social order. In: LNCS—Proceedings of the coordination, organizations, institutions, and norms in agent systems II, vol 4386. Springer, New York, pp 274Google Scholar
  25. 25.
    Guessoum Z, Ziane M, Faci N (2004) Monitoring and organizational-level adaptation of multi-agent systems. In: AAMAS ’04: Proceedings of the third international joint conference on autonomous agents and multiagent systems, Washington, DC, USA. IEEE Computer Society, pp 514–521Google Scholar
  26. 26.
    Hübner JF, Boissier O, Kitio R, Ricci A (2009) Instrumenting multi-agent organisations with organisational artifacts and agents. Auton Agents Multi-Agent Syst, pp 1–32Google Scholar
  27. 27.
    Horling B, Benyo B, Lesser V (2001) Using self-diagnosis to adapt organizational structures. In: AGENTS ’01: Proceedings of the fifth international conference on autonomous agents, New York, NY, USA. ACM, pp 529–536Google Scholar
  28. 28.
    Horling B, Lesser V (2004) A survey of multi-agent organizational paradigms. Knowl Eng Rev 19(4): 281–316CrossRefGoogle Scholar
  29. 29.
    Hübner JF, Sichman JS, Boissier O (2004) Using the \({\mathcal{M}{\rm oise+}}\) for a cooperative framework of mas reorganisation. In: LNAI—Proceedings of the 17th Brazilian symposium on artificial intelligence (SBIA’04), vol 3171. Springer, New York, pp 506–515Google Scholar
  30. 30.
    Hübner JF, Sichman JS, Boissier O (2005) S-MOISE+: a middleware for developing organised multi-agent systems. In: AAMAS workshops. LNCS, vol 3913. Springer, New York, pp 64–78Google Scholar
  31. 31.
    Jennings N, Sycara K, Wooldridge M (1998) A roadmap of agent research and development. Auton Agents Multi-Agent Syst 1(1): 7–38CrossRefGoogle Scholar
  32. 32.
    Jones J, Goel AK (2004) Revisiting the credit assignment problem. In: Challenges of Game AI: Proceedings of the AAAI, vol 4, pp 04–04Google Scholar
  33. 33.
    Kephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1): 41–50Google Scholar
  34. 34.
    Kota R, Gibbins N, Jennings N (2009) Decentralised structural adaptation in agent organisations. In: AAMAS workshop on organised adaptation in multi-agent systems, Estoril, Portugal. Springer, New York, pp 54–71Google Scholar
  35. 35.
    Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad MN, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi-Agent Syst 9(1): 87–143CrossRefGoogle Scholar
  36. 36.
    Lewis D (1969) Convention: a philosophical study. Harvard University Press, CambridgeGoogle Scholar
  37. 37.
    Omicini A, Ricci A, Viroli M (2008) Artifacts in the A&A meta-model for multi-agent systems. Auton Agents Multi-Agent Syst 17(3): 432–456CrossRefGoogle Scholar
  38. 38.
    Panait L, Luke S (2005) Cooperative multi-agent learning: the state of the art. Auton Agents Multi-Agent Syst 11(3): 387–434CrossRefGoogle Scholar
  39. 39.
    Plaza E, McGinty L (2006) Distributed case-based reasoning. Knowl Eng Rev 20(03): 261–265CrossRefGoogle Scholar
  40. 40.
    Pujol JM, Delgado J, Sanguesa R, Flache A (2005) The role of clustering on the emergence of efficient social conventions. In: IJCAI’05: Proceedings of the 19th international joint conference on artificial intelligence, pp 965–970Google Scholar
  41. 41.
    Riesbeck CK, Schank RC (1989) Inside case-based reasoning. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  42. 42.
    Salazar-Ramirez N, Rodríguez-Aguilar JA, Arcos JL (2008) An infection-based mechanism for self-adaptation in multi-agent complex networks. In: Brueckner S, Robertson P, Bellur U (eds) 2nd IEEE international conference on self-adaptive and self-organizing systems, SASO pp 161–170Google Scholar
  43. 43.
    Di Marzo Serugendo G, Gleizes MP, Karageorgos A (2006) Self-organisation and emergence in MAS: an overview. Informatica 30: 45–54MATHGoogle Scholar
  44. 44.
    Sims M, Corkill D, Lesser V (2008) Automated organization design for multi-agent systems. Auton Agents Multi-Agent Syst 16(2): 151–185CrossRefGoogle Scholar
  45. 45.
    Smith BC (1982) Reflection and semantics in a procedural language. Technical Report MIT/LCS/TR-272Google Scholar
  46. 46.
    Smyth B, Cunningham P (1996) The utility problem analysed: a case-based reasoning perspective. In: European workshop on case-based reasoning, pp 392–399Google Scholar
  47. 47.
    Wooldridgey M, Ciancarini P (2001) Agent-oriented software engineering: the state of the art. In: Agent-oriented software engineering. Springer, New York, pp 55–82Google Scholar
  48. 48.
    Xie H, Yang YR, Krishnamurthy A, Liu Y, Silberschatz A (2008) P4P: provider portal for applications. ACM SIGCOMM Comput Commun Rev 38(4): 351–362CrossRefGoogle Scholar
  49. 49.
    Zhang C, Abdallah S, Lesser V (2008) MASPA: multi-agent automated supervisory policy adaptation. Technical Report 03Google Scholar
  50. 50.
    Zhang C, Abdallah S, Lesser V (2009) Integrating organizational control into multi-agent learning. In: Proceedings of The 8th international conference on Autonomous Agents and Multiagent Systems, vol 2. International Foundation for Autonomous Agents and Multiagent Systems, pp 757–764Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jordi Campos
    • 1
  • Marc Esteva
    • 2
  • Maite López-Sánchez
    • 1
  • Javier Morales
    • 1
  • Maria Salamó
    • 1
  1. 1.MAIA DepartmentUniversitat de BarcelonaBarcelonaSpain
  2. 2.Artificial Intelligence Research Institute (IIIA)Spanish National Research Council (CSIC)BellaterraSpain

Personalised recommendations