64-Bit and 128-bit DX random number generators
Article
First Online:
- 139 Downloads
- 3 Citations
Abstract
Extending 32-bit DX generators introduced by Deng and Xu (ACM Trans Model Comput Simul 13:299–309, 2003), we perform an extensive computer search for classes of 64-bit and 128-bit DX generators of large orders. The period lengths of these high resolution DX generators are ranging from 101915 to 1058221. The software implementation of these generators can be developed for 64-bit or 128-bit hardware. The great empirical performances of DX generators have been confirmed by an extensive battery of tests in the TestU01 package. These high resolution DX generators can be useful to perform large scale simulations in scientific investigations for various computer systems.
Keywords
Combined generators Empirical tests Equidistribution Linear congruential generator (LCG) Multiple recursive generator (MRG) MT19937Mathematics Subject Classification (2000)
65C10 Random number generationPreview
Unable to display preview. Download preview PDF.
References
- 1.Deng LY, Xu H (2003) A system of high-dimensional, efficient, long-cycle and portable uniform random number generators. ACM Trans Model Comput Simul 13: 299–309CrossRefGoogle Scholar
- 2.Lehmer DH (1951) Mathematical methods in large-scale computing units. In: Proceedings of the second symposium on large scale digital computing machinery. Harvard University Press, Cambridge, MA, pp 141–146Google Scholar
- 3.Matumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8: 3–20CrossRefGoogle Scholar
- 4.Deng LY (2004) Generalized Mersenne prime number and its application to random number generation. In: Niederreiter H (eds) Monte Carlo and Quasi-Monte Carlo methods. Springer-Verlag, Berlin, pp 167–180Google Scholar
- 5.Deng LY (2005) Efficient and portable multiple recursive generators of large order. ACM Trans Model Comput Simul 15: 1–13CrossRefGoogle Scholar
- 6.Lidl R, Niederreiter H (1994) Introduction to finite fields and their applications. Revised edition. Cambridge University Press, CambridgeGoogle Scholar
- 7.L’Ecuyer P, Blouin F, Couture R (1993) A search for good multiple recursive linear random number generators. ACM Trans Model Comput Simul 3: 87–98zbMATHCrossRefGoogle Scholar
- 8.Gentle JE (2003) Random number generation and Monte Carlo methods, 2nd edn. Springer-Verlag, New YorkzbMATHGoogle Scholar
- 9.Hörmann W (1994) A note on the quality of random variates generated by the ratio of uniforms method. ACM Trans Model Comput Simul 4: 96–106zbMATHCrossRefGoogle Scholar
- 10.Kinderman AJ, Monahan JF (1997) Computer generation of random variables using ratio of uniform deviates. ACM Trans Math Softw 3: 257–260CrossRefGoogle Scholar
- 11.Marsaglia G, Tsang W (2004) The 64-bit universal RNG. Stat Probab Lett 66: 183–187zbMATHCrossRefMathSciNetGoogle Scholar
- 12.Marsaglia G, Zaman A, Tsang W (1990) Toward a universal random number generator. Stat Probab Lett 8: 35–39CrossRefMathSciNetGoogle Scholar
- 13.Nishimura T (2000) Tables of 64-bit Mersenne twisters. ACM Trans Model Comput Simul 10: 348–357CrossRefGoogle Scholar
- 14.Doornik J (2007) Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul 17:article 3Google Scholar
- 15.L’Ecuyer P (1997) Bad lattice structures for vectors of non-successive values produced by some linear recurrences. INFORMS J Comput 9: 57–60zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Knuth DE (1998) The art of computer programming, vol 2. Seminumerical algorithms, 3rd edn. Addison-Wesley, ReadingzbMATHGoogle Scholar
- 17.L’Ecuyer P (1996) Combined multiple recursive random number generators. Oper Res 44: 816–822zbMATHCrossRefGoogle Scholar
- 18.L’Ecuyer P (1999) Good parameter sets for combined multiple recursive random number generators. Oper Res 47: 159–164zbMATHCrossRefGoogle Scholar
- 19.Deng LY, Lin DKJ (2000) Random number generation for the new century. Am Stat 54: 145–150CrossRefGoogle Scholar
- 20.L’Ecuyer P, Touzin R (2004) On the Deng–Lin random number generators and related methods. Stat Comput 14: 5–9CrossRefMathSciNetGoogle Scholar
- 21.Damgard I, Landrock P, Pomerance C (1993) Average case error estimates for the strong probable prime test. Math Comput 61: 177–194zbMATHMathSciNetGoogle Scholar
- 22.Crandall R, Pomerance C (2000) Prime numbers: a computational perspective. Springer-Verlag, New YorkGoogle Scholar
- 23.Williams HC, Seah E (1979) Some primes of the form (a n−1)/(a−1). Math Comput 33: 1337–1342zbMATHMathSciNetGoogle Scholar
- 24.Brillhart J, Lehmer DH, Selfridge JL, Tuckerman B, Wagstaff SS Jr (2002) Factorizations of b n±1, b=2,3,5,6,7,10,11,12 up to high powers, 3rd edn. American Mathematical SocietyGoogle Scholar
- 25.Payne WH, Rabung JR, Bogyo T (1969) Coding the Lehmer pseudo number generator. Commun ACM 12: 85–86zbMATHCrossRefGoogle Scholar
- 26.L’Ecuyer P (1988) Efficient and portable combined random number generators. Commun ACM 31:742–748, 774Google Scholar
- 27.Deng LY, George EO (1990) Generation of uniform variates from several nearly uniformly distributed variables. Commun Stat B 19: 145–154zbMATHCrossRefMathSciNetGoogle Scholar
- 28.Deng LY, Lin DKJ, Wang J, Yuan Y (1997) Statistical justification of combination generators. Stat Sin 7: 993–1003zbMATHMathSciNetGoogle Scholar
- 29.Matsumoto M, Wada I, Kuramoto A, Ashihara H (2007) Common defects in initialization of pseudorandom number generators. ACM Trans Model Comput Simul 17:Article 15Google Scholar
- 30.L’Ecuyer P, Simard R (2007) TestU01: a C library for empirical testing of random number generators. ACM Trans Math Softw 33(22): 1–40MathSciNetGoogle Scholar
- 31.Lewis TG, Payne WH (1973) Generalized feedback shift register pseudorandom number algorithm. J Assoc Comput Mach 20: 456–468zbMATHGoogle Scholar
- 32.Panneton F, L’Ecuyer P, Matsumoto M (2006) Improved long-period generators based on linear recurrences modulo 2. ACM Trans Math Softw 32: 1–16CrossRefMathSciNetGoogle Scholar
- 33.Wichmann BA, Hill ID (1982) An efficient and portable pseudo-random number generator. Appl Stat 31: 188–190CrossRefGoogle Scholar
- 34.Marsaglia G (1985) A current view of random number generators. In: Computer science and statistics, sixteenth symposium on the interface. North-Holland, Amsterdam. Elsevier, pp 3–10Google Scholar
Copyright information
© Springer-Verlag 2010