Computing

, Volume 89, Issue 1–2, pp 27–43 | Cite as

64-Bit and 128-bit DX random number generators

  • Lih-Yuan Deng
  • Henry Horng-Shing Lu
  • Tai-Been Chen
Article

Abstract

Extending 32-bit DX generators introduced by Deng and Xu (ACM Trans Model Comput Simul 13:299–309, 2003), we perform an extensive computer search for classes of 64-bit and 128-bit DX generators of large orders. The period lengths of these high resolution DX generators are ranging from 101915 to 1058221. The software implementation of these generators can be developed for 64-bit or 128-bit hardware. The great empirical performances of DX generators have been confirmed by an extensive battery of tests in the TestU01 package. These high resolution DX generators can be useful to perform large scale simulations in scientific investigations for various computer systems.

Keywords

Combined generators Empirical tests Equidistribution Linear congruential generator (LCG) Multiple recursive generator (MRG) MT19937 

Mathematics Subject Classification (2000)

65C10 Random number generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deng LY, Xu H (2003) A system of high-dimensional, efficient, long-cycle and portable uniform random number generators. ACM Trans Model Comput Simul 13: 299–309CrossRefGoogle Scholar
  2. 2.
    Lehmer DH (1951) Mathematical methods in large-scale computing units. In: Proceedings of the second symposium on large scale digital computing machinery. Harvard University Press, Cambridge, MA, pp 141–146Google Scholar
  3. 3.
    Matumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8: 3–20CrossRefGoogle Scholar
  4. 4.
    Deng LY (2004) Generalized Mersenne prime number and its application to random number generation. In: Niederreiter H (eds) Monte Carlo and Quasi-Monte Carlo methods. Springer-Verlag, Berlin, pp 167–180Google Scholar
  5. 5.
    Deng LY (2005) Efficient and portable multiple recursive generators of large order. ACM Trans Model Comput Simul 15: 1–13CrossRefGoogle Scholar
  6. 6.
    Lidl R, Niederreiter H (1994) Introduction to finite fields and their applications. Revised edition. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    L’Ecuyer P, Blouin F, Couture R (1993) A search for good multiple recursive linear random number generators. ACM Trans Model Comput Simul 3: 87–98MATHCrossRefGoogle Scholar
  8. 8.
    Gentle JE (2003) Random number generation and Monte Carlo methods, 2nd edn. Springer-Verlag, New YorkMATHGoogle Scholar
  9. 9.
    Hörmann W (1994) A note on the quality of random variates generated by the ratio of uniforms method. ACM Trans Model Comput Simul 4: 96–106MATHCrossRefGoogle Scholar
  10. 10.
    Kinderman AJ, Monahan JF (1997) Computer generation of random variables using ratio of uniform deviates. ACM Trans Math Softw 3: 257–260CrossRefGoogle Scholar
  11. 11.
    Marsaglia G, Tsang W (2004) The 64-bit universal RNG. Stat Probab Lett 66: 183–187MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Marsaglia G, Zaman A, Tsang W (1990) Toward a universal random number generator. Stat Probab Lett 8: 35–39CrossRefMathSciNetGoogle Scholar
  13. 13.
    Nishimura T (2000) Tables of 64-bit Mersenne twisters. ACM Trans Model Comput Simul 10: 348–357CrossRefGoogle Scholar
  14. 14.
    Doornik J (2007) Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul 17:article 3Google Scholar
  15. 15.
    L’Ecuyer P (1997) Bad lattice structures for vectors of non-successive values produced by some linear recurrences. INFORMS J Comput 9: 57–60MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Knuth DE (1998) The art of computer programming, vol 2. Seminumerical algorithms, 3rd edn. Addison-Wesley, ReadingMATHGoogle Scholar
  17. 17.
    L’Ecuyer P (1996) Combined multiple recursive random number generators. Oper Res 44: 816–822MATHCrossRefGoogle Scholar
  18. 18.
    L’Ecuyer P (1999) Good parameter sets for combined multiple recursive random number generators. Oper Res 47: 159–164MATHCrossRefGoogle Scholar
  19. 19.
    Deng LY, Lin DKJ (2000) Random number generation for the new century. Am Stat 54: 145–150CrossRefGoogle Scholar
  20. 20.
    L’Ecuyer P, Touzin R (2004) On the Deng–Lin random number generators and related methods. Stat Comput 14: 5–9CrossRefMathSciNetGoogle Scholar
  21. 21.
    Damgard I, Landrock P, Pomerance C (1993) Average case error estimates for the strong probable prime test. Math Comput 61: 177–194MATHMathSciNetGoogle Scholar
  22. 22.
    Crandall R, Pomerance C (2000) Prime numbers: a computational perspective. Springer-Verlag, New YorkGoogle Scholar
  23. 23.
    Williams HC, Seah E (1979) Some primes of the form (a n−1)/(a−1). Math Comput 33: 1337–1342MATHMathSciNetGoogle Scholar
  24. 24.
    Brillhart J, Lehmer DH, Selfridge JL, Tuckerman B, Wagstaff SS Jr (2002) Factorizations of b n±1, b=2,3,5,6,7,10,11,12 up to high powers, 3rd edn. American Mathematical SocietyGoogle Scholar
  25. 25.
    Payne WH, Rabung JR, Bogyo T (1969) Coding the Lehmer pseudo number generator. Commun ACM 12: 85–86MATHCrossRefGoogle Scholar
  26. 26.
    L’Ecuyer P (1988) Efficient and portable combined random number generators. Commun ACM 31:742–748, 774Google Scholar
  27. 27.
    Deng LY, George EO (1990) Generation of uniform variates from several nearly uniformly distributed variables. Commun Stat B 19: 145–154MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Deng LY, Lin DKJ, Wang J, Yuan Y (1997) Statistical justification of combination generators. Stat Sin 7: 993–1003MATHMathSciNetGoogle Scholar
  29. 29.
    Matsumoto M, Wada I, Kuramoto A, Ashihara H (2007) Common defects in initialization of pseudorandom number generators. ACM Trans Model Comput Simul 17:Article 15Google Scholar
  30. 30.
    L’Ecuyer P, Simard R (2007) TestU01: a C library for empirical testing of random number generators. ACM Trans Math Softw 33(22): 1–40MathSciNetGoogle Scholar
  31. 31.
    Lewis TG, Payne WH (1973) Generalized feedback shift register pseudorandom number algorithm. J Assoc Comput Mach 20: 456–468MATHGoogle Scholar
  32. 32.
    Panneton F, L’Ecuyer P, Matsumoto M (2006) Improved long-period generators based on linear recurrences modulo 2. ACM Trans Math Softw 32: 1–16CrossRefMathSciNetGoogle Scholar
  33. 33.
    Wichmann BA, Hill ID (1982) An efficient and portable pseudo-random number generator. Appl Stat 31: 188–190CrossRefGoogle Scholar
  34. 34.
    Marsaglia G (1985) A current view of random number generators. In: Computer science and statistics, sixteenth symposium on the interface. North-Holland, Amsterdam. Elsevier, pp 3–10Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lih-Yuan Deng
    • 1
  • Henry Horng-Shing Lu
    • 2
  • Tai-Been Chen
    • 3
  1. 1.Department of Mathematical SciencesThe University of MemphisMemphisUSA
  2. 2.Institute of StatisticsNational Chiao Tung UniversityHsinchuTaiwan, ROC
  3. 3.Department of Medical Imaging and Radiological SciencesI-Shou UniversityKaohsiungTaiwan, ROC

Personalised recommendations