Computing

, Volume 87, Issue 1–2, pp 63–89 | Cite as

Constructing lattice rules based on weighted degree of exactness and worst case error

Article

Abstract

Recall that an integration rule is said to have a trigonometric degree of exactness m if it integrates exactly all trigonometric polynomials of degree ≤ m. In this paper we focus on high dimensions, say, d ≫ 6. We introduce three notions of weighted degree of exactness, where we use weights to characterize the anisotropicness of the integrand with respect to successive coordinate directions. Unlike in the classical unweighted setting, the minimal number of integration points needed to achieve a prescribed weighted degree of exactness no longer grows exponentially with d provided that the weights decay sufficiently fast. We present a component-by-component algorithm for the construction of a rank-1 lattice rule such that (i) it has a prescribed weighted degree of exactness, and (ii) its worst case error achieves the optimal rate of convergence in a weighted Korobov space. Then we introduce a modified, more practical, version of this algorithm which maximizes the weighted degree of exactness in each step of the construction. Both algorithms are illustrated by numerical results.

Keywords

Multivariate numerical integration Lattice rules Degree of exactness 

Mathematics Subject Classification (2000)

65D30 (Numerical integration) 65D32 (Quadrature and cubature formulas) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckers M, Cools R (1993) A relation between cubature formulae of trigonometric degree and lattice rules. In: Brass H, Hämmerlin G (eds) Numerical integration IV (Oberwolfach, 1992). Birkhäuser Verlag, pp 13–24Google Scholar
  2. 2.
    Cools R, Govaert H (2003) Five- and six-dimensional lattice rules generated by structured matrices. J Complexity 19(6): 715–729MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cools R, Lyness JN (2001) Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree. Math Comput 70(236): 1549–1567MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cools R, Nuyens D (2008) A Belgian view on lattice rules. In: Keller A, Heinrich S, Niederreiter H (eds) Monte Carlo and Quasi-Monte Carlo methods 2006. Springer-Verlag, New York, pp 3–21Google Scholar
  5. 5.
    Cools R, Novak E, Ritter K (1999) Smolyak’s construction of cubature formulas of arbitrary trigonometric degree. Computing 62(2): 147–162MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cools R (1997) Constructing cubature formulae: the science behind the art. Acta Numer 6: 1–54CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cools R, Reztsov AV (1997) Different quality indexes for lattice rules. J Complexity 13(2): 235–258MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cools R, Sloan IH (1996) Minimal cubature formulae of trigonometric degree. Math Comput 65(216): 1583–1600MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dick J (2004) On the convergence rate of the component-by-component construction of good lattice rules. J Complexity 20(4): 493–522MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dick J, Pillichshammer F, Waterhouse B (2008) The construction of good extensible rank-1 lattices. Math Comput 77(264): 2345–2373CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kuo FY (2003) Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J Complexity 19: 301–320MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kuo FY, Sloan IH, Woźniakowski H (2006) Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter H, Talay D (eds) Monte Carlo and Quasi-Monte Carlo methods 2004. Springer-Verlag, New York, pp 289–330CrossRefGoogle Scholar
  13. 13.
    Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. In: Regional Conference Series in Applied Mathematics, no. 63. SIAMGoogle Scholar
  14. 14.
    Novak E, Woźniakowski H (2008) Tractability of multivariate problems, vol I: linear information. In: EMS Tracts in Mathematics, vol 6. European Mathematical Society Publishing HouseGoogle Scholar
  15. 15.
    Nuyens D, Cools R (2006) Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math Comput 75(2): 903–920MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sloan IH, Joe S (1994) Lattice methods for multiple integration. Oxford Science Publications, OxfordMATHGoogle Scholar
  17. 17.
    Sloan IH, Woźniakowski H (1998) When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J Complexity 14(1): 1–33MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sloan IH, Woźniakowski H (2001) Tractability of multivariate integration for weighted Korobov classes. J Complexity 17(4): 697–721MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zaremba SK (1972) La méthode des “bons treillis” pour le calcul des intégrales multiples. In: Zaremba SK (ed) Applications of number theory to numerical analysis/Applications de la Théorie des Nombres à l’Analyse Numérique. Academic Press, New York, pp 39–116Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceK.U. LeuvenLeuvenBelgium
  2. 2.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia

Personalised recommendations