Advertisement

Computing

, 86:89 | Cite as

Adaptive quasi-interpolating quartic splines

  • Martin Hering-BertramEmail author
  • Gerd Reis
  • Frank Zeilfelder
Article

Abstract

We present an adaptive quasi-interpolating quartic spline construction for regularly sampled surface data. The method is based on a uniform quasi-interpolating scheme, employing quartic triangular patches with C 1-continuity and optimal approximation order within this class. Our contribution is the adaption of this scheme to surfaces of varying geometric complexity, where the tiling resolution can be locally defined, for example driven by approximation errors. This way, the construction of high-quality spline surfaces is enhanced by the flexibility of adaptive pseudo-regular triangle meshes. Numerical examples illustrate the use of this method for adaptive terrain modeling, where uniform schemes produce huge numbers of patches.

Keywords

Triangular splines Adaptive approximation Quasi interpolation 

Mathematics Subject Classification (2000)

65D07 Splines 65D17 and 68U07 Computer aided design 65D18 Computer graphics and computational geometry 

References

  1. 1.
    Alfeld P, Piper B, Schumaker L (1987) An explicit basis for C 1 quartic bivariate splines. SIAM J Numer Anal 24: 891–911zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bertram M, Tricoche X, Hagen H (2003) Adaptive smooth scattered-data approximation. In: Proceedings of VisSym’03, joint eurographics and IEEE TCVG symposium on visualization, pp 177–184, 297Google Scholar
  3. 3.
    Bruijns J (1998) Quadratic Bézier triangles as drawing primitives. In: Proceedings of the ACM SIGGRAPH/eurographics workshop on graphics hardware, pp 15–24Google Scholar
  4. 4.
    Campagna S, Slusallek P, Seidel H-P (1997) Ray tracing of spline surfaces: Bézier clipping, Chebyshev boxing, and bounding volume hierarchy—a critical comparison with new results. Vis Comput 13: 265–282zbMATHCrossRefGoogle Scholar
  5. 5.
    Chui C (1989) Multivariate splines. CBMS 54, SIAMGoogle Scholar
  6. 6.
    Chui CK, Hecklin G, Nürnberger G, Zeilfelder F (2008) Optimal lagrange interpolation by quartic C 1 splines on triangulations. J Comput Appl Math 216(2): 344–363. ISSN:0377-0427. doi: 10.1016/j.cam.2007.05.013 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cignoni P, Ganovelli F, Gobbetti E, Marton F, Ponchio F, Scopigno R (2003) Planet-sized batched dynamic adaptive meshes (p-bdam). In: Proceedings of IEEE visualization 2003, pp 147–154Google Scholar
  8. 8.
    Davydov O, Zeilfelder F (2004) Scattered data fitting by direct extension of local polynomials with bivariate splines. Adv Comput Math 21(3): 223–271zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Boor C (1987) B-form basics. In: Farin G (ed) Geometric modeling, pp 131–148Google Scholar
  10. 10.
    de Boor C, Höllig K, Riemenschneider S (1993) Box splines. Springer, BerlinzbMATHGoogle Scholar
  11. 11.
    de Boor C, Jia Q (1993) A sharp upper bound on the approximation order of smooth bivariate pp functions. J Approx Theory 72: 24–33zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Duchaineau M, Wolinsky M, Sigeti D, Miller M, Aldrich C, Mineev-Weinstein M (1997) ROAMing terrain: real-time optimally adapting meshes. In: Proceedings of IEEE visualization 1997, pp 81–88Google Scholar
  13. 13.
    Farin G (1986) Triangular Bernstein-Bézier patches. Comput Aided Geom Des 3: 83–127CrossRefMathSciNetGoogle Scholar
  14. 14.
    Farin G (2002) Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann, Menlo ParkGoogle Scholar
  15. 15.
    Haber J, Zeilfelder F, Davydov O, Seidel H-P (2001) Smooth approximation and rendering of large scattered data sets. In: Proceedings of IEEE visualization 2001, pp 341–347, 571Google Scholar
  16. 16.
    Hwa L, Duchaineau M, Joy KI (2004) Adaptive 4-8 texture hierarchies. In: Proceedings of IEEE visualization, pp 219–226Google Scholar
  17. 17.
    Kohlmüller N, Nürnberger G, Zeilfelder F (2003) Construction of cubic 3D spline surfaces by Lagrange interpolation at selected points. In: Lyche T, Mazure M-L, Schumaker LL (eds) Curve and surface design, Saint-Malo 2002, pp 235–245Google Scholar
  18. 18.
    Lai M-J, Schumaker LL (2007) Spline functions on triangulations (Encyclopedia of mathematics and its applications), Cambridge University Press, LondonGoogle Scholar
  19. 19.
    Lindstrom P, Pascucci V (2002) Terrain simplification simplified: a general framework for view- dependent out-of-core visualization. IEEE Trans Vis Comput Graph 8(3): 239–254CrossRefGoogle Scholar
  20. 20.
    Loop C, Blinn J (2006) Real-time GPU rendering of piecewise algebraic surfaces. In: Proceedings of SIGGRAPH 2006, pp 664–670Google Scholar
  21. 21.
    Losasso F, Hoppe H (2004) Geometry clipmaps: terrain rendering using nested regular grids. In: Proceedings of SIGGRAPH 2004, pp 769–776Google Scholar
  22. 22.
    Nishita T, Sederberg T, Kakimoto M (1990) Ray tracing trimmed rational surface patches. In: Proceedings of SIGGRAPH, pp 337–345Google Scholar
  23. 23.
    Nürnberger G, Zeilfelder F (2000) Developments in bivariate spline interpolation. J Comput Appl Math 121: 125–152zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Prautzsch H, Boehm W, Paluszny M (2002) Bézier and B-Spline techniques. Springer, BerlinzbMATHGoogle Scholar
  25. 25.
    Reis G (2005) Hardware based Bézier patch renderer. In: Proceedings of IASTED visualization, imaging, and image processing (VIIP) 2005, pp 622–627Google Scholar
  26. 26.
    Schneider J, Westermann R (2006) GPU-friendly high-quality terrain rendering. J WSCG 14(1–3): 49–56Google Scholar
  27. 27.
    Seidel H-P (1993) An introduction to polar forms. IEEE Comput Graph Appl 13(1): 38–46CrossRefGoogle Scholar
  28. 28.
    Sorokina T, Zeilfelder F (2005) Optimal quasi-interpolation by quadratic C 1 splines on four- directional meshes. In: Chui CK, Neamtu M, Schumaker LL (eds) Approximation theory XI. Gatlinburg, pp 423–438Google Scholar
  29. 29.
    Sorokina T, Zeilfelder F (2007) Local quasi-interpolation by cubic C 1 splines on type-6 tetrahedral partitions. IMA J Numer Anal 27(1): 74–101zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sorokina T, Zeilfelder F (2008) An explicit quasi-interpolation scheme based on C 1 quartic splines on type-1 triangulations. Comput Aided Geom Des 25(1): 1–13CrossRefMathSciNetGoogle Scholar
  31. 31.
    Stoll C, Gumhold S, Seidel H-P (2006) Incremental raycasting of piecewise quadratic surfaces on the GPU. In: Proceedings of IEEE symposium on interactive raytracing, pp 141–150Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martin Hering-Bertram
    • 1
    Email author
  • Gerd Reis
    • 2
  • Frank Zeilfelder
    • 3
  1. 1.Fraunhofer ITWMKaiserslauternGermany
  2. 2.DFKIKaiserslauternGermany
  3. 3.Technical University of DarmstadtDarmstadtGermany

Personalised recommendations