, 86:131 | Cite as

Illustrative visualization: interrogating triangulated surfaces

  • Robert Moorhead
  • Yanlin Guan
  • Hans Hagen
  • Sven Böttger
  • Natallia Kotava
  • Christian Wagner


Geometrical modeling is a crucial aspect of simulations involving manufactured objects and is usually performed using free-form surfaces. However, to simulate the flow through or about a manufactured object or to simulate structural integrity, the free-form surfaces must be tessellated into triangulated surfaces. To concurrently visualize the simulation results and the quality of the surfaces, we present two novel visualization algorithms for triangulated surfaces as opposed to the traditional freeform surfaces. The proposed algorithms are for curvature estimation based on local surface fitting with cubic triangular Bézier patches and for reflection-line computation.


Geometric modelling Tesselation Triangulation Curvature estimation 

Mathematics Subject Classification (2000)



  1. 1.
    Adam G, Tang X (2005) A sampling framework for accurate curvature estimation in discrete surfaces. IEEE Trans Vis Comput Graph 11(5): 573–583CrossRefGoogle Scholar
  2. 2.
    Blinn J, Newell ME (1976) Texture and reflection in computer generated images. Commun ACM 19: 542–547CrossRefGoogle Scholar
  3. 3.
    Borelli V, Cazals F, Morvan J-M (2003) On the angular defect of triangulations and the pointwise approximation of curvatures. Comput Aided Geom Des 20: 319–341CrossRefGoogle Scholar
  4. 4.
    Brill ME, Moorhead RJ, Guan Y (2003) Immersive surface interrogation. Technical Report MSSU-COE-ERC-03-04, Mississippi State University, AprilGoogle Scholar
  5. 5.
    Canfield T, Disz T, Papka M, Steven R, Huang M, Taylor V, Chen J (1996) Toward real-time interactive virtual prototyping of mechanical systems: experiences coupling virtual reality with finite element analysis. In: Proceedings of high performance computing 1996, pp. 339–345Google Scholar
  6. 6.
    Cruz-Neira C, Sandin D, DeFanti T, Kenyon R, Hart J (1992) The CAVE: audio visual experience automatic virtual environment. Commun ACM 35(6): 67–72CrossRefGoogle Scholar
  7. 7.
    Cruz-Neira C, Sandin D, DeFanti T (1993) Virtual reality: the design and implementation of the CAVE. In: Proceedings of SIGGRAPH 93 computer graphics conference, ACM SIGGRAPH, pp 135–142Google Scholar
  8. 8.
    Dong C, Wang G (2005) Curvatures Estimation on Triangular Mesh. J Zhejiang Uni Sci 6(Suppl. I): 128–136CrossRefGoogle Scholar
  9. 9.
    Hamman B (1993) Curvature approximation for triangulated surfaces. Comput Suppl 8: 139–153Google Scholar
  10. 10.
    Hoffmann C (1990) A dimensionality paradigm for surface interrogations. Comput Aided Geom Des 7: 517–532MATHCrossRefGoogle Scholar
  11. 11.
    Hoschek J (1985) Smoothing of curves and surfaces. Comput Aided Geom Des 2(1–3): 97–105MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Farin G (1986) Triangular Bernstein-Bézier patches. Comput Aided Geom Des 3(2): 83–127CrossRefMathSciNetGoogle Scholar
  13. 13.
    Farin G (1990) Curves and surfaces for computer aided geometric design, 2nd edn. Academic Press, DublinMATHGoogle Scholar
  14. 14.
    Hagen H, Pottmann H, Divivier A (1991) Visualization functions on a surface. J Vis Animat 2(2): 52–58CrossRefGoogle Scholar
  15. 15.
    Hagen H, Schreiber T, Gschwind E (1990) Methods for surface interrogation. Proc Vis 90: 187–193Google Scholar
  16. 16.
    Hagen H, Guan Y, Moorhead R (2002) Interactive surface interrogation using IPT technology. In: 6th International immersive projection technology symposium, March 2002 (Proceedings on CD)Google Scholar
  17. 17.
    Klass R (1980) Correction of local surface irregularities using reflection lines. Comput Aided Des 12(2): 73–77CrossRefGoogle Scholar
  18. 18.
    Kaufmann E, Klass R (1988) Smoothing surface using reflection lines for families of splines. Comput Aided Des 20(6): 312–316MATHCrossRefGoogle Scholar
  19. 19.
    Loos J, Greiner G, Seidel HP (1999) Modeling of surfaces with fair reflection line pattern. Proc Shape Model Appl 99: 256–263CrossRefGoogle Scholar
  20. 20.
    Kang J, Lee K, Park S, Kim T (2001) Efficient algorithm for realtime generation of reflection lines. KSME Int J (SCIE) 15(2): 160–171Google Scholar
  21. 21.
    Krsek P, Lukacs G, Martin RR (1998) Algorithms for computing curvatures from range data. In: Martin RR, Varady T (eds) RECCAD deliverable document 4 Copernicus project No. 1068. Report GML 1998/4, Computer and Automation Institute. Hungarian Academy of Sciences, BudapestGoogle Scholar
  22. 22.
    Martin RR (1998) Estimation of principle curvatures from range data. Int J Shape Model 4(3–4): 99–109CrossRefGoogle Scholar
  23. 23.
    Meek DS, Walton DJ (2000) On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput Aided Geom Des 17: 521–543MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Meyer M, Desbrun M, Schrder P, Barr AH (2002) Discrete differential—geometry operators for triangulated 2-manifolds. VisMath 2002, Berlin, GermanyGoogle Scholar
  25. 25.
    van Overveld CWAM, Wyvill B (1997) An algorithm for polygon subdivision based on vertex normals. Comput Graph Int 97: 3–12CrossRefGoogle Scholar
  26. 26.
    Petitjean S (2002) A survey of methods for recovering quadrics in triangle meshes. ACM Comput Surv 34(2): 211–262CrossRefGoogle Scholar
  27. 27.
    Razdan A, Bae M (2005) Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Comput Aided Des 37(14): 1481–1491CrossRefGoogle Scholar
  28. 28.
    Skiena S (1989) Problems in geometric probing. Algorithmica 4(4): 599–605CrossRefMathSciNetGoogle Scholar
  29. 29.
    Surazhsky T, Magid E, Soldea O, Elber G, Rivlin E (2003) A comparison of Gaussian and mean curvatures estimation methods on triangular meshes. In: Proceedings of 2003 IEEE internationa conference on robotics and automation (IGRA2003)Google Scholar
  30. 30.
    Sussner G, Greiner G, Grosso R (2002) Generating high quality meshes for interactive examination of surface quality on car bodies. In: Proceedings of 11th international meshing roundtable, pp. 99–110, Itacha, New YorkGoogle Scholar
  31. 31.
    Taubin G (1995) Estimating the Tensor of curvature of a surface from a polyhedral approximation. ICCV, pp 902–907Google Scholar
  32. 32.
    Theisel H, Farin G (1997) The curvature of characteristic curves and surfaces. IEEE Comput Graph Appl 17(6): 88–96CrossRefGoogle Scholar
  33. 33.
    Vlachos A, Peters J, Boyd C, Mitchell J (2001) Curved PN Triangles. In: 2001 ACM symposium on interactive 3D graphics, pp 159–166Google Scholar
  34. 34.
    Watanabe K, Belyaev AG (2001) Detection of salient curvature features on polygonal surfaces. EUROGRAPHICS 2001, vol 20Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Robert Moorhead
    • 1
  • Yanlin Guan
    • 1
  • Hans Hagen
    • 2
  • Sven Böttger
    • 2
  • Natallia Kotava
    • 2
  • Christian Wagner
    • 2
  1. 1.Mississippi State UniversityMississippi StateUSA
  2. 2.University of KaiserslauternKaiserslauternGermany

Personalised recommendations