Computing

, Volume 85, Issue 1–2, pp 137–151 | Cite as

Step-out group signatures

  • Marek Klonowski
  • Łukasz Krzywiecki
  • Mirosław Kutyłowski
  • Anna Lauks
Article

Abstract

Group signature schemes enable to create digital signatures such that the signers are hidden in a group of potential signers. However, in a case of need it is possible to reveal the actual signer either by a group administrator or collectively by the group members. We design a new kind of signatures that we call step-out group signature where the situation is reversed: any member of the group except the signer may prove that he or she was not the signer. This is a dual solution that is useful in certain scenarios: in many cases it is unnecessary to find the signer, it suffices to eliminate some potential signers (e.g. during prosecutions and court procedures). Our solution is more convenient for implementing personal data protection rules: since the signer is not revealed, there is no need to protect this information. On the other hand, the traditional scheme may lead to serious legal problems: if the legal case is to find out whether Bob has created group signature s, it might be illegal to reveal that Alice has created s.

Keywords

Group signatures Anonymity Lagrangian interpolation 

Mathematics Subject Classification (2000)

94A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese G, Camenisch J, Joye M, Tsudik G (2000) A practical and provably secure coalition-resistant group signature scheme. In: Advances in Cryptology—CRYPTO. Lecture notes in computer science, vol 1880. Springer, Heidelberg, pp 255–270Google Scholar
  2. 2.
    Bellare M, Micciancio D, Warinschi B (2003) Foundations of group signatures: formal definition, simplified requirements and a construction based on trapdoor permutations. In: Advances in Cryptology—EUROCRYPT. Lecture Notes in Computer Science, Warsaw, Poland, vol 2656. Springer, Heidelberg, pp. 614–629Google Scholar
  3. 3.
    Bellare M, Micciancio D, Warinschi B (2003) Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Advances in cryptology—EUROCRYPT. Lecture notes in computer science, vol 2656. Springer, Heidelberg, pp 614–629Google Scholar
  4. 4.
    Boneh D, Boyen X, Shacham H (2004) Short group signatures. In: Advances in cryptology—CRYPTO. Lecture Notes in computer science, vol 3152. Springer, Heidelberg, pp 41–55Google Scholar
  5. 5.
    Camenisch J (1997) Efficient and generalized group signatures. In: EUROCRYPT. LNCS, vol 1233. Springer, Heidelberg, pp 465–479Google Scholar
  6. 6.
    Chaum D, van Heyst E (1991) Group signatures. In: Advances in cryptology—EUROCRYPT. Lecture notes in computer science, vol 547. Springer, Heidelberg, pp 257–265Google Scholar
  7. 7.
    Dodis Y, Fazio N (2003) Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt Y (ed) Public key cryptography. LNCS, vol 2567. Springer, Heidelberg, pp 100–115Google Scholar
  8. 8.
    Kim CH, Hwang YH, Lee PJ (2004) Practical pay-tv scheme using traitor tracing scheme for multiple channels. In: Lim CH, Yung M (eds) WISA. LNCS, vol 3325. Springer, Heidelberg, pp 264–277Google Scholar
  9. 9.
    Klonowski M, Krzywiecki L, Kutyłowski M, Lauks A (2008) Step-out ring signatures. In: Mathematical foundations of computer science, 33rd International Symposium, MFCS. Lecture Notes in Computer Science, vol 5162. Springer, Heidelberg, pp 431–442Google Scholar
  10. 10.
    Krzywiecki L, Kubiak P, Kutyłowski M (2006) A revocation scheme preserving privacy. In: Information Security and Cryptology, Inscrypt. Lecture notes in computer science, vol 4318. Springer, Heidelberg, pp 130–143Google Scholar
  11. 11.
    Liu JK, Wei VK, Wong DS (2004) Linkable spontaneous anonymous group signature for ad hoc groups. In: ACISP 2004. Lecture notes in computer science, vol 3108. Springer, Heidelberg, pp 325–335Google Scholar
  12. 12.
    Manulis M (2006) Democratic group signatures: on an example of joint ventures. In: Proceedings of the ACM symposium on information, computer and communications security, ASIACCS. Taipei, Taiwan, ACM, p 365Google Scholar
  13. 13.
    Manulis M, Sadeghi AR, Schwenk J (2006) Linkable democratic group signatures. In: ISPEC. Lecture notes in computer science, vol 3903. Springer, Heidelberg, pp 187–201Google Scholar
  14. 14.
    Naor M, Pinkas B (1999) Oblivious transfer and polynomial evaluation. In: STOC ’99: Proceedings of the 31st annual ACM Symposium on Theory of Computing, ACM, pp 245–254Google Scholar
  15. 15.
    Shamir A (1979) How to share a secret. Commun ACM 22(11): 612–613MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tsang PP, Wei VK, Chan TK, Au MH, Liu JK, Wong DS (2004) Separable linkable threshold ring signatures. In: INDOCRYPT. Lecture notes in computer science, vol 3348. Springer, Heidelberg, pp 384–398Google Scholar
  17. 17.
    Tzeng WG, Tzeng ZJ (2001) A public-key traitor tracing scheme with revocation using dynamic shares. In: Kim K (ed) Public key cryptography. LNCS, vol 1992. Springer, Heidelberg, pp 207–224Google Scholar
  18. 18.
    Wei VK (2005) Tracing-by-linking group signatures. In: Information Security, 8th International Conference, ISC. Lecture Notes in Computer Science, vol 3650. Springer, Heidelberg, pp. 149–163Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marek Klonowski
    • 1
  • Łukasz Krzywiecki
    • 1
  • Mirosław Kutyłowski
    • 1
  • Anna Lauks
    • 1
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations