Computing

, Volume 82, Issue 1, pp 31–52 | Cite as

Multigrid optimization methods for linear and bilinear elliptic optimal control problems

Article

Summary

Multigrid optimization schemes that solve elliptic linear and bilinear optimal control problems are discussed. For the solution of these problems, the multigrid for optimization (MGOPT) method and the collective smoothing multigrid (CSMG) method are developed and compared. It is shown that though these two methods are formally similar, they provide different approaches to computational optimization with partial differential equations.

AMS Subject Classifications

49K20 65N06 65N55 

Keywords

elliptic optimal control problems multigrid methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borzì A. (2003). Multigrid methods for parabolic distributed optimal control problems. J Comput Appl Math 157: 365–382 CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Borzì A. (2005). A multigrid scheme for elliptic constrained optimal control problems. Comput Optim Appl 31: 309–333 CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Borzì A. (2005). On the convergence of the MG/OPT method. PAMM 5: 735–736 CrossRefGoogle Scholar
  4. 4.
    Borzì A. (2007). High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems. J Comput Appl Math 200: 67–85 CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Borzì A., Kunisch K. and Kwak D. (2003). Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system. SIAM J Control Optim 41: 1477–1497 CrossRefMATHGoogle Scholar
  6. 6.
    Brandt A. (1977). Multi-level adaptive solutions to boundary-value problems. Math Comp 31: 333–390 CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Georgescu V. (1979). On the unique continuation property for Schrödinger Hamiltonians. Helv Phys Acta 52: 655–670 MathSciNetGoogle Scholar
  8. 8.
    Gunzburger M.D., Hou L. and Svobodny T.P. (1991). Finite element approximations of an optimal control problem associated with the scalar Ginzburg–Landau equation. Comput Math Appl 21: 123–131 CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Lewis, R. M., Nash, S. G.: A multigrid approach to the optimization of systems governed by differential equations. AIAA-2000-4890, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA (2000)Google Scholar
  10. 10.
    Lewis R.M. and Nash S.G. (2005). Model problems for the multigrid optimization of systems governed by differential equations. SIAM J Sci Comput 26: 1811–1837 CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Lions J.L. (1971). Optimal control of systems governed by partial differential equations. Springer, Berlin MATHGoogle Scholar
  12. 12.
    Nash S.G. (2000). A multigrid approach to discretized optimization problems. Optim Methods Softw 14: 99–116 CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Nocedal J. and Wright S.J. (1999). Numerical optimization. Springer, New York MATHGoogle Scholar
  14. 14.
    Oh S., Bouman C. and Webb K. (2006). Multigrid tomographic inversion with variable resolution data and image spaces. IEEE Trans Image Proc 15: 2805–2819 CrossRefGoogle Scholar
  15. 15.
    Oh S., Milstein A., Bouman C. and Webb K. (2005). A general framework for nonlinear multigrid inversion. IEEE Trans Image Proc 14: 125–140 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Oh S., Milstein A., Bouman C. and Webb K. (2005). Multigrid algorithms for optimization and inverse problems. IEEE Trans Image Proc 14: 125–140 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ye J.C., Bouman C., Webb K. and Millane R. (2001). Nonlinear multigrid algorithms for bayesian optical diffusion tomography. IEEE Trans Image Proc 10(6): 909–922 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2008

Authors and Affiliations

  1. 1.Institut für Mathematik und Wissenschaftliches RechnenKarl-Franzens-Universität GrazGrazAustria
  2. 2.Institute of Mathematics, College of ScienceUniversity of the PhilippinesDilimanPhilippines

Personalised recommendations