, 83:109 | Cite as

HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method



HOM4PS-2.0 is a software package in FORTRAN 90 which implements the polyhedral homotopy continuation method for solving polynomial systems. It updates its original version HOM4PS in three key aspects: (1) new method for finding mixed cells, (2) combining the polyhedral and linear homotopies in one step, (3) new way of dealing with curve jumping. Numerical results show that this revision leads to a spectacular speed-up, ranging up to 1950s, over its original version on all benchmark systems, especially for large ones. It surpasses the existing packages in finding isolated zeros, such as PHCpack (Verschelde in ACM Trans Math Softw 25:251–276, 1999), PHoM (Gunji et al. in Computing 73:57–77, 2004), and Bertini (Bates et al. in Software for numerical algebraic geometry. Available at, in speed by big margins.


Polynomial systems Homotopy continuation methods Polyhedral homotopy Numerical experiments Software package 

Mathematics Subject Classification (2000)

65H10 65H15 90B99 


  1. 1.
    Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW Bertini: Software for numerical algebraic geometry. Available at
  2. 2.
    Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW (2008) Adaptive multiprecision path tracking. SIAM J Numer Anal 46(2): 722–746CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bernshtein DN (1975) The number of roots of a system of equations. Funct Anal Appl 9(3): 183–185MATHCrossRefGoogle Scholar
  4. 4.
    Björk G, Fröberg R (1991) A faster way to count the solutions of inhomogeneous systems of algebraic equations. J Symb Comput 12(3): 329–336CrossRefGoogle Scholar
  5. 5.
    Boege W, Gebauer R, Kredel H (1986) Some examples for solving systems of algebraic equations by calculating Groebner bases. J Symb Comput 2: 83–98MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cohn H (1982) An explicit modular equation in two variables and Hilbert’s twelfth problem. Math Comp 38: 227–236MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dai T, Kim S, Kojima M (2003) Computing all nonsingular solutions of cyclic-n polynomial using polyhedral homotopy continuation methods. J Comput Appl Math 152(1–2): 83–97MATHMathSciNetGoogle Scholar
  8. 8.
    Gao T, Li TY (2000) Mixed volume computation via linear programming. Taiwan J Math 4: 599–619MATHMathSciNetGoogle Scholar
  9. 9.
    Gao T, Li TY (2003) Mixed volume computation for semi-mixed systems. Discrete Comput Geom 29(2): 257–277MATHMathSciNetGoogle Scholar
  10. 10.
    Gao T, Li TY, Wu M (2005) Algorithm 846: MixedVol: a software package for mixed volume computation. ACM Trans Math Softw 31(4): 555–560MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gunji T, Kim S, Kojima M, Takeda A, Fujisawa K, Mizutani T (2004) PHoM—a polyhedral homotopy continuation method. Computing 73: 57–77MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Huber B, Sturmfels B (1995) A polyhedral method for solving sparse polynomial systems. Math Comp 64: 1541–1555MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Huber B, Verschelde J (1998) Polyhedral end games for polynomial continuation. Numer Algorithms 18(1): 91–108MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kim S, Kojima M (2004) Numerical stability of path tracing in polyhedral homotopy continuation methods. Computing 73: 329–348MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kuo YC, Li TY (2008) Determining dimension of the solution component that contains a computed zero of a polynomial system. J Math Anal Appl 338(2): 840–851MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lee TL, Li TY Mixed volume computation. A revisit (submitted)Google Scholar
  17. 17.
    Leykin A, Verschelde J, Zhao A (2006) Newton’s method with deflation for isolated singularities of polynomial systems. Theor Comput Sci 359(1–3): 111–122MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Leykin A, Verschelde J, Zhao A (2007) Evaluation of Jacobian matrices for Newton’s method with deflation to approximate isolated singular solutions of polynomial systems. Symb Numer Comput 269–278Google Scholar
  19. 19.
    Leykin A, Verschelde J, Zhao A (2008) Higher-order deflation for polynomial systems with isolated singular solutions. In: IMA: algorithms in algebraic geometry, vol 146. Springer, Heidelberg, pp 79–97Google Scholar
  20. 20.
    Li TY (1997) Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numer 6: 399–436CrossRefGoogle Scholar
  21. 21.
    Li TY (1999) Solving polynomial systems by polyhedral homotopies. Taiwan J Math 3: 251–279MATHGoogle Scholar
  22. 22.
    Li TY (2003) Solving polynomial systems by the homotopy continuation method. Handbook of numerical analysis, vol XI. North-Holland, Amsterdam, pp 209–304Google Scholar
  23. 23.
    Li TY, Li X (2001) Finding mixed cells in the mixed volume computation. Found Comput Mathem 1: 161–181MATHCrossRefGoogle Scholar
  24. 24.
    Li TY, Sauer T, Yorke JA (1989) The cheaters homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J Numer Anal 26: 1241–1251MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Li TY, Zeng Z (2005) A rank-revealing method with updating, downdating, and applications. SIAM J Matrix Anal Appl 26: 918–946MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mizutani T, Takeda A, Kojima M (2007) Dynamic enumeration of all mixed cells. Discrete Comput Geom 37: 351–367MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Morgan AP (1987) Solving polynomial systems using continuation for engineering and scientific problems. Prentice-Hall, New JerseyMATHGoogle Scholar
  28. 28.
    Morgan AP, Sommese AJ (1992) Coefficient-parameter polynomial continuation (Errata: Appl Math Comput 51:207). Appl Math Comput 29: 123–160CrossRefMathSciNetGoogle Scholar
  29. 29.
    Morgan AP, Sommese AJ, Wampler CW (1992) A power series method for computing singular solutions to nonlinear analytic systems. Numer Math 63(3): 1779–1792MathSciNetGoogle Scholar
  30. 30.
    Noonburg VW (1989) A neural network modeled by an adaptive Lotka–Volterra system. SIAM J Appl Math 49: 1779–1792MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sommese A, Verschelde J, Wampler C (2001) Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J Numer Anal 38(6): 2022–2046MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sommese A, Wampler C (2005) The numerical solution of polynomial systems arising in engineering and science. World Scientific Publishing, HackensackGoogle Scholar
  33. 33.
    Traverso C The PoSSo test suite at
  34. 34.
    Verschelde J (1999) Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans Math Softw 25:251–276. Software available at

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations