Advertisement

Computing

, Volume 81, Issue 4, pp 259–268 | Cite as

A projection method for the computation of inner eigenvalues using high degree rational operators

  • W. HackbuschEmail author
  • W. Kress
Article
  • 59 Downloads

Abstract

To efficiently calculate only part of the spectrum of a matrix, one can use a projection onto a suitable subspace. In this work, we present a technique to efficiently calculate such a projection without knowledge of the spectrum. The technique requires only few matrix–matrix products and inversions, which for some classes of matrices, like the \({\mathcal{H}}\) -matrices, can be computed in almost linear complexity.

Keywords

eigenvalue computation spectral projection sign function high-degree polynomials 

AMS Subject Classifications

65N25 65F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bebendorf M. and Hackbusch W. (2003). Existence of \({\mathcal{H}}\) -matrix approximants to the inverse FE-matrix of elliptic operators with L -coefficients. Numer Math 95: 1–28 zbMATHCrossRefMathSciNetGoogle Scholar
  2. Börm S., Grasedyck L. and Hackbusch W. (2003). Introduction to hierarchical matrices with applications. Engng Anal Bound Elem 27: 405–422 zbMATHCrossRefGoogle Scholar
  3. Golub G.H. and van der Vorst H.A. (2000). Eigenvalue computation in the 20th century. J Comp Appl Math 123: 35–65 zbMATHCrossRefGoogle Scholar
  4. Hackbusch W. (1999). A sparse matrix arithmetic based on \({\mathcal{H}}\) -matrices. Part I: introduction to \({\mathcal{H}} \) -matrices. Computing 62: 89–108 zbMATHCrossRefMathSciNetGoogle Scholar
  5. Hackbusch W. and Khoromskij B. (2006). Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part II. HKT representation of certain operators. Computing 76: 203–225 zbMATHCrossRefMathSciNetGoogle Scholar
  6. Sorensen, D. C.: Numerical methods for large eigenvalue problems. Acta Numer 519–584 (2002)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations