Computing

, Volume 81, Issue 2–3, pp 199–213 | Cite as

An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing

  • M. Fisher
  • B. Springborn
  • P. Schröder
  • A. I. Bobenko
Article

Summary

The discrete Laplace–Beltrami operator plays a prominent role in many digital geometry processing applications ranging from denoising to parameterization, editing, and physical simulation. The standard discretization uses the cotangents of the angles in the immersed mesh which leads to a variety of numerical problems. We advocate the use of the intrinsic Laplace–Beltrami operator. It satisfies a local maximum principle, guaranteeing, e.g., that no flipped triangles can occur in parameterizations. It also leads to better conditioned linear systems. The intrinsic Laplace–Beltrami operator is based on an intrinsic Delaunay triangulation of the surface. We detail an incremental algorithm to construct such triangulations together with an overlay structure which captures the relationship between the extrinsic and intrinsic triangulations. Using a variety of example meshes we demonstrate the numerical benefits of the intrinsic Laplace–Beltrami operator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobenko, A. I., Springborn, B. A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput Geometry (2007); DOI 10.1007/s00454-007-9006-1Google Scholar
  2. Botsch M. and Kobbelt L. (2004). An intuitive framework for real-time freeform modeling. ACM Trans Graph 23(3): 630–634 CrossRefGoogle Scholar
  3. Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Comp. Graphics (Proc. of SIGGRAPH), pp. 317–324 (1999)Google Scholar
  4. Desbrun M., Meyer M. and Alliez P. (2002). Intrinsic parameterizations of surface meshes. Comp Graph Forum (Proc EG) 21(3): 209–218 CrossRefGoogle Scholar
  5. Grinspun, E., Hirani, A., Desbrun, M., Schröder, P.: Discrete shells. In: Symp. on Comp. Anim., pp. 62–67 (2003)Google Scholar
  6. Grinspun, E., Schröder, P., Desbrun, M. (eds.): Discrete differential geometry. Course Notes. ACM SIGGRAPH (2005)Google Scholar
  7. Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: Symp. on Geom. Proc., pp. 127–137 (2003)Google Scholar
  8. Indermitte C., Liebling T.M., Troyanov M. and Clémençon H. (2001). Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theor Comput Sci 263: 263–274 MATHCrossRefGoogle Scholar
  9. Kharevych L., Springborn B. and Schröder P. (2006). Discrete conformal mappings via circle patterns. ACM Trans Graph 25(2): 412–438 CrossRefGoogle Scholar
  10. Lévy B., Petitjean S., Ray N. and Maillot J. (2002). Least squares conformal maps for automatic texture atlas generation. ACM Trans Graph 21(3): 362–371 CrossRefGoogle Scholar
  11. Mercat C. (2001). Discrete Riemann surfaces and the Ising model. Comm Math Phys 218(1): 177–216 MATHCrossRefMathSciNetGoogle Scholar
  12. Pinkall U. and Polthier K. (1993). Computing discrete minimal surfaces and their conjugates. Experiment Math 2(1): 15–36 MATHMathSciNetGoogle Scholar
  13. Polthier K. and Schmies M. (2002). Straightest geodesics on polyhedral surfaces. In: Hege, H.C. and Polthier, K. (eds) Mathematical visualization, pp 135–152. Springer, Wien New York Google Scholar
  14. Rippa S. (1990). Minimal roughness property of the Delaunay triangulation. CAGD 7(6): 489–497 MATHMathSciNetGoogle Scholar
  15. Shewchuk, J.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proc. Int. Meshing Roundtable, pp. 115–126 (2002)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M. Fisher
    • 1
  • B. Springborn
    • 2
  • P. Schröder
    • 1
  • A. I. Bobenko
    • 2
  1. 1.California Institute of Technology (CALTECH), Computer SciencePasadenaUSA
  2. 2.TU BerlinBerlinGermany

Personalised recommendations