, Volume 80, Issue 1, pp 23–45

A new matrix approach to real FFTs and convolutions of length 2k



A new matrix, scaled odd tail, SOT, is introduced. This new matrix is used to derive real and complex FFT algorithms for lengths n = 2k. A compromise is reached between Fourier transform and polynomial transform methods for computing the action of cyclic convolutions. Both of these methods lead to arithmetic operation counts that are better than previously published results. A minor improvement is also demonstrated that enables us to compute the actions of Fermat prime order FFTs in fewer additions than previously available algorithms.

AMS Subject Classifications

42A38 42A85 65T50 


Fast Fourier transforms real convolutions Rader's method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergland, G. D., Dolan, M. T.: In: IEEE Acoust., Speech, Signal Processing Society, Programs for Digital Signal Processing. New York: IEEE Press 1979.Google Scholar
  2. Bi, G., Zeng, Y. 2004Transforms and fast algorithms for signal analysis and representationsBirkhäuserBostonMATHGoogle Scholar
  3. Davis, L. 1979Circulant matricesWileyNew YorkMATHGoogle Scholar
  4. Duhamel, P., Holliman, H. 1984Split-radix FFT algorithmElectr. Lett.201416CrossRefGoogle Scholar
  5. Duhamel, P., Vetterli, M. 1990Fast Fourier transforms: a tutorial review and a state of the artSignal Process.19259299MATHCrossRefMathSciNetGoogle Scholar
  6. Frigo, M., Johnson, S. G. 2005The design and implementation of FFTW3Proc. IEEE93216231CrossRefGoogle Scholar
  7. Hu, N. C., Ersoy, O. K. 1991Fast computation of real discrete Fourier transform for any number of data pointsIEEE Trans. Circuits Sys.3812801292MATHCrossRefGoogle Scholar
  8. Johnson, H. W., Burrus, C. S.: The design of optimal DFT algorithms using dynamic programming. IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 378–387 (1983).Google Scholar
  9. Johnson, S. G.: private communication.Google Scholar
  10. Lu, C., Cooley, J., Tolimieri, R. 1993FFT algorithms for prime transform sizes and their implementation on VAX, IBM3090VF, and IBM RS/6000IEEE Trans. Acoust. Speech Signal Process.41638648MATHGoogle Scholar
  11. Murakami, H. 1994Real-valued decimation-in-time and decimation-in-frequency algorithmsIEEE Trans. Circuits Sys.41808816MATHCrossRefGoogle Scholar
  12. Nussbaumer, H. J. 1982Fast Fourier transform and convolution algorithms, 2nd corrected and updated editionSpringerBerlin HeidelbergGoogle Scholar
  13. Rader, C. M. 1968Discrete Fourier transforms when the number of data samples is primeProc. IEEE5611071108CrossRefGoogle Scholar
  14. Scheid, F. 1989Schaum's outline series of theory and problems of numerical analysis2McGraw-HillNew York184197Google Scholar
  15. Selesnick, I., Burrus, C. 1996Automatic generation of prime length FFT programsIEEE Trans. Acoust. Speech Signal Process.441424Google Scholar
  16. Sorenson, H., Jones, D., Heideman, M., Burrus, C.: Real-valued fast Fourier transform algorithms. IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 849–863 (1987).Google Scholar
  17. Swarztrauber, P.: FFTPACK, version 4, April 1985., 2006.
  18. Temperton, C. 1983Fast mixed-radix real Fourier transformsJ. Comput. Phys.52340350MATHCrossRefMathSciNetGoogle Scholar
  19. Temperton, C. 1988A new set of minimum-add small-n rotated DFT modulesJ. Comput. Phys.75190198MATHCrossRefMathSciNetGoogle Scholar
  20. Tolimieri, R., An, M., Lu, C. 1997Algorithms for discrete Fourier transform and convolution2SpringerNew YorkMATHGoogle Scholar
  21. Van Buskirk, J., Lundy, T.: The new FFT web page:, 2004.
  22. Verbauwhede, I. 2002

    What makes a programmable DSP processor special?

    Oklobdzija, V. eds. The Computer Engineering HandbookCRC PressBoca Raton, FL
    Google Scholar
  23. Vetterli, M., Duhamel, P. 1989Split-radix algorithms for length-pm DFT'sIEEE Trans. Acoust. Speech Signal Process.375764MATHCrossRefMathSciNetGoogle Scholar
  24. Vetterli, M., Nussbaumer, H. J. 1984Simple FFT and DCT algorithms with reduced number of operationsSignal Process.6267278CrossRefMathSciNetGoogle Scholar
  25. Walker, J. S. 1988Fourier analysisOxford University PressNew YorkMATHGoogle Scholar
  26. Yavne, R. 1968An economical method for calculating the discrete Fourier transformAFIPS Proc.33115125Google Scholar

Copyright information

© Springer-Verlag Wien 2007

Authors and Affiliations

  1. 1.Virtuallaboratory.netWheat RidgeUSA
  2. 2.One Room Schoolhouse of PhysicsWheat RidgeUSA

Personalised recommendations