, Volume 79, Issue 2–4, pp 325–335 | Cite as

Shadow metamorphosis



Any two objects A and B can be viewed as two different projections of their Cartesian product A×B. Rotating and projecting A×B results in a continuous transformation of A into B. During certain rotations, the contour of the Cartesian product remains the same although its projection changes. Based on these properties, we derive a fast and simple morphing algorithm without topological constraints on either object.

AMS Subject Classifications

68U05 68U07 


Morphing Minkowski sum Cartesian products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH '00: Proc. 27th Annual Conf. Computer Graphics and Interactive Techniques, pp. 157–164. New York: ACM Press/Addison-Wesley 2000.Google Scholar
  2. Alexa, M. 2002Recent advances in mesh morphingComput. Graph. Forum21173196CrossRefGoogle Scholar
  3. Cohen-Or, D., Solomovic, A., Levin, D. 1998Three-dimensional distance field metamorphosisACM Trans. Graph.17116141CrossRefGoogle Scholar
  4. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. Computer Graphics 27(Annual Conference Series), 19–26 (1993).Google Scholar
  5. Kaul, A., Rossignac, J. 1992Solid-interpolating deformations: Construction and animation of pipsComput. Graph.16107115CrossRefGoogle Scholar
  6. Sederberg, T. W., White, S. C., Zundel, A. K. 1989Fat arcs: a bounding region with cubic convergenceComput. Aided Geom. Des.6205218MATHCrossRefGoogle Scholar
  7. Vahrenkamp, N.: Metamorphosen durch Schattenwürfe. Diplomarbeit, Universität Karlsruhe, Germany, July 2005.Google Scholar

Copyright information

© Springer-Verlag Wien 2007

Authors and Affiliations

  1. 1.Institut für Betriebs- und DialogsystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations